Образовавшийся газ называют гидроген, газ Брауна или водяной газ. Двигатель на воде создали с целью оберечь экологию, ведь современные машины выкидывают в атмосферу кучу вредных выхлопных газов. Двигатель внутреннего сгорания превращает 15 процентов энергии бензина в механическую энергию, в то время как двигатель на воде эти проценты увеличит в разы. Законы термодинамики не будут нарушены, если в автомобиле будет работать система Брауна. Она заключается в следующем – газ начинает сгорать и образуется сухой водяной пар, который в свою очередь улучшает теплообмен между клапанами и седлом. Пар очищает клапанно-поршневую систему от нагара. Двигатель на воде имеет больший запас механической энергии, чем двигатель на бензине. Он экономичнее, потому что увеличивается пробег форсунок и межсервисный пробег. На литре воды можно ездить до 40 часов.

Создать двигатель на воде в домашних условиях не просто, но возможно, ведь воду нужно разложить на газ, а для этого потребуются катализаторы и электроды. Еще нужно запастись дистиллированной водой. Самая простая конструкция генератора Брауна будет состоять из оргстекла 5 мм, проволоки из нержавеющей стали марки 316, трубки из винила (диаметр 4 мм) и 6 банок по 700 мл объемом. Проволоки понадобится 20 метров. При работе используют резиновые перчатки. Нужно чтоб получилось определенное количество газа. Если двигатель объемом 1,5 литра, тогда газ должен образовываться от 0,7 до 1,5 литра в минуту. Этот процесс будет зависеть от напряжения, созданного на электродах. Электролит нагреется до 60 градусов за два часа, если подавать питание в 12 В. Это многовато, поэтому лучше использовать подачу в 6 В. К сожалению, двигатель чисто на воде еще не создали, поэтому понадобиться бензин, чтоб запустить мотор.

Далее из проволоки и пластин из нержавеющей стали создаются 2 электрода и крепятся на крышках банок. На крышках делаются штуцеры, в которые будет выходить газ, и болты, которые будут держать электроды. Крышки должны прилегать герметично, а электроды не замыкаются между собой. Теперь в 6 банок заливают по пол литра дистиллированной воды с добавлением пол чайной ложки КаОН. После того, как провернуть ключ зажигания, начнет вырабатываться газ. Трубку монтируют в воздуховод возле фильтра. При выработке водорода и кислорода, смесь проходит по коллектору автомобиля и смешивается с бензином из бака с топливом и сгорает в двигателе, как и полагается. При этом очень экономично сгорает сам бензин и двигатель не так быстро изнашивается. Такая система двигателя на воде должна работать на любом авто, если все соединить правильно и подать нужное напряжение.

Интерес у автомобильных экспериментаторов вызывает и GEET-реактор Пантоне. (GEET - это Глобальная Экологическая Энергетическая Технология.) Он в создании проще и не требует подачи определенного напряжения. Суть его в том, что выхлопные газы проходят через заостренный стержень. Он становится статически заряженным, поэтому молекулы воды, находящиеся в газе, расщепляет на водород и кислород. Выхлопные газы имеют высокую температуру, которая тоже участвует в процессе расщепления. Далее в реакторе молекулы углеводорода разделяются на углерод и водород. Получаются образования из кислорода, углерода и водорода. Кислород не производит окисления, потому что в газах содержится углекислота и азот. Проделывая опыты с таким двигателем на воде, нужна смесь из 20 процентов бензина и 80 процентов воды. Тогда он будет экономичным и способным выдержать далекие расстояния.

Кто проводил опыты, заметил, что часто соотношение получается 50 на 50, а не 20 на 80. Но те, кто водит авто и пытается экономить на дорогом в наше время топливе, будут радоваться и 10 процентам экономии, это очевидно. Недостатком реактора Пантоне является затруднительный выход выхлопных соединений, ведь там образуется большое сопротивление. Кроме того реактор однорежимный. GEET-реактор Пантоне стали устанавливать по всему миру на газонокосилки, бензогенераторы. Проводилась масса опытов и в реактор заливалась сырая нефть и даже пищевые отходы. На основе данного реактора попытались создать другое устройство GEET-муффлер. Оно работает при использовании водяного пара, сажи и углеводородов. Основной механизм – это циклон. В нем расщепление компонентов происходит при воздействии центробежной силы и дросселировании.

Муффлер состоит из каталитического реактора, в котором химический катализатор из выхлопных газов создает водород. Реакция может начаться при температуре в 400 градусов. В то время, как реактор Пантоне требовал температуры в 500-600 градусов. Можно работать и при температуре ниже 400 градусов, но тогда, чтоб появился водород, нужно установить реактор с электрическими нагревательными элементами. Для этого часто используют свечу накаливания от дизельных моторов. Двигатель на воде с использованием устройства GEET-муффлера тоже потребует бензин, но расход его будет от 20 до 30 процентов от всей жидкости. Максимум 50 в некоторых моделях автомобилей. Но это существенная экономия бюджета семьи. Устройство удобно тем, что оно компактное и вода, чтоб работал муффлер, берется не из отдельного бака, а из выхлопных газов. Значит, водителю не нужно контролировать процесс заправки автомобиля водой.

Двигатель на воде - это новые технологии, разрабатываемые учеными с целью очистить воздух от вредных выбросов в атмосферу. Ведь не только машины на бензине загрязняют его. Заводы и фабрики разрушают озоновый слой, что может привести к непоправимым последствиям и напрочь изменить климат всего земного шара. Природа уже давно посылает сигналы, чтоб человек задумался об использовании новых разработок.

Мировые запасы воды на Земле неисчерпаемы. Мы лихорадочно ищем топливо будущего, а сами буквально купаемся в нем. Ведь чтобы пользоваться водой как топливом, надо придумать некое устройство, работающее на ней, а вернее, на ее составляющих водороде и кислороде. Из основ химии известны методы диссоциации (способы разложения) воды на водород и кислород – термическая, электрическая, под действием ионизирующих излучений, радиоволн и др.

Среди автомобилистов давно ходят рассказы о двигателях внутреннего сгорания, работающих на воде. В научно-популярной литературе периодически появляются сенсационные сообщения об успешных опытах по созданию двигателей на воде. Однако, проверить их достоверность очень трудно. Например, профессор Сапогин рассказывал, как его учитель профессор Г. В. Дудко в 1951 г. участвовал в испытаниях двигателя внутреннего сгорания, который представлял собой гибрид дизеля с карбюраторным двигателем. Для его запуска требовался всего стакан бензина, а потом зажигание отключалось, форсунками в камеры сгорания подавалась топливным насосом обыкновенная вода со специальными добавками, предварительно нагретая и сильно сжатая. Двигатель был установлен на лодке, и испытатели два дня плавали на ней по Азовскому морю, черпая вместо бензина воду из-за борта.

На вопрос, почему такие двигатели до сих пор не поставлены на серийное производство, профессор Сапогин обычно ответил журналисту: "Такой вопрос может прийти в голову только человеку, не знающему жизнь!"

Наверно, в этих рассказах есть какая-то доля истины. Также понятно, что странам международной бензиновой олигархии, как США и России такие изобретения не нужны, поэтому они неохотно пускают такого рода изобретения не только в промышленность, но и на страницы патентных бюллетней. Им, объединенным в автомобильно-бензиновый комплекс, сейчас легко бороться с разрозненными энтузиастами двигателей на воде еще и потому, что у последних нет четкого представления о том, как из воды рождается тепло, необходимое для работы двигателя. Свои разработки они делали методом проб вслепую без освещения пути к цели теорией.

На X Международном симпозиуме "Перестройка естествознания", состоявшемся в 1999 в г. Волгодонске, П. Мачукас из Вильнюса докладывал, что он разработал вещество, таблетка которого на ведро воды превращает воду в заменитель бензина для обычных двигателей. Себестоимость таблетки в 3 раза ниже, чем стоимость бензина на такую же продолжительность поездки. Состав таблетки изобретатель держит в секрете.

Покопавшись в подшивках научно-популярных журналов и газет, можно найти немало подобных околонаучных историй. Так, в газете "Комсомольская правда" от 20 мая 1995 г. приведена история А. Г. Бакаева из Перми, приставка которого якобы позволяет любому автомобилю работать на воде.

Однако, что двигатели на воде - прерогатива только изобретателей из стран СНГ. Например, некто Ю. Браун в США построил демонстрационный автомобиль, в бак которого заливается вода, а Р. Гуннерман в ФРГ доработал обычный двигатель внутреннего сгорания для работы на смеси газ/вода или спирт/ вода в пропорции 55/45. Дж. Грубер также пишет и о двигателе немецкого изобретателя Г. Пошля, работающем на смеси вода/ бензин в пропорции 9/1.

Но самый широкоизвестный двигатель, разлагающий воду на водород и кислород, основанный на электролизе, сконструирован американским изобретателем Стенли Мейром. Доктор Дж. Грубер из ФРГ упоминает о двигателе С. Мейера с водой в роли топлива, запатентованном в США в 1992 г. (Патент США № 5149507). Об этом двигателе была телепередача по 4-му каналу Лондонского телевидения 17 декабря 1995 г.

Обычный элекролиз воды требует тока, измеряемого в амперах, в то время как электролитический двигатель С. Мейера производит тот же эффект при милиамперах. Более того, обыкновенная водопроводная вода требует добавления электролита, например, серной кислоты, для увеличения проводимости; двигатель Мэйера-же действует при огромной производительности с обычной отфильтрованной от грязи водой.

Согласно очевидцам, самым поразительным аспектом двигателя Мэйера было то, что он оставался холодным даже после часов производства газа.

Эксперименты Мэйера, которые он представил к патентованию, заслужили серию патентов США, представленные под Секцией 101. Следует отметить, что представление патента под этой секцией зависит от успешной демонстрации изобретения Патентному Рецензионному Комитету.

Рис. Электролитическая ячейка С. Мейера.

Электролитическая ячейка Мэйера имеет много общего с электролитической ячейкой, за исключением того, что она работает при высоком потенциале и низком токе лучше, чем другие методы. Конструкция проста. Электроды сделаны из параллельных пластин нержавеющей стали, образующие либо плоскую, либо концентрическую конструкцию. Выход газа зависит обратно пропорционально расстоянию между ними; предлагаемое патентом расстояние 1.5 мм дает хороший результат.

Значительные отличия заключаются в питании двигателя. Мэйер использовал внешнюю индуктивность, которая образует колебательный контур с емкостью ячейки, - чистая вода обладает диэлектрической проницаемостью около 5 ед., - чтобы создать параллельную резонансную схему.

Она возбуждается мощным импульсным генератором, который вместе с емкостью ячейки и выпрямительным диодом составляет схему накачки. Высокая частота импульсов производит ступенчато увеличивающийся потенциал на электродах ячейки до тех пор, пока не достигается точка, где молекула воды распадается и возникает кратковременный импульс тока. Схема измерения тока питания выявляет этот скачок и запирает источник импульсов на несколько циклов, позволяя воде восстановиться.

Рис. Электрическая схема электролитической ячейки С. Мейера

Группа очевидцев независимых научных наблюдателей Великобритании свидетельствовал,а что американский изобретатель, Стэнли Мэйер, успешно разлагает обыкновенную водопроводную воду на составляющие элементы посредством комбинации высоковольтных импульсов, при среднем потреблении тока, измеряемого всего лишь милиамперами. Зафиксированный выход газа был достаточным, чтобы показать водородно-кислородное пламя, которое мгновенно плавило сталь(около 0.5 литров в секунду).

Рис. Принципиальная схема электролитической ячейки С. Мейера

По сравнению с обычным сильноточным электролизом, очевидцы констатировали отсутствие какого-либо нагревания ячейки. Мэйер отказался прокомменировать подробности, которые бы позволили ученым воспроизвести и оценить его "водяную ячейку". Однако, он представил достаточно детальное описание американскому Патентному Бюро, чтобы убедить их, что он может обосновать его заявку на изобретение.

Одна демонстрационная ячейка была снабжена двумя параллельными электродами возбуждения. После наполнения водопроводной водой, электроды генерировали газ при очень низких уровнях тока - не больше, чем десятые доли ампера, и даже миллиамперы, как заявляет Мэйер, - выход газа увеличивался, когда электроды сдвигались более близко, и уменьшался, когда они отодвигались. Потенциал в импульсе достигал десятков тысяч вольт.

Вторая ячейка содержала 9 ячеек с двойными трубками из нержавеющей стали и производила намного больше газа. Была сделана серия фотографий, показывающая производство газа при миллиамперном уровне. Когда напряжение было доведено до предельного, газ выходил в очень впечатляющем количестве.

Исследователь химик Keith Hindley описал демонстрацию работы ячейки Мэйера: "После дня презентаций, Griffin комитет засвидетельствовал ряд важных свойств WFC (водяная топливная ячейка, как назвал ее изобретатель). "Мы обратили внимание, что вода вверху ячейки медленно стала окрашиваться от бледно-кремового до темно-коричневого цвета, мы почти уверены в влиянии хлора в сильно хлорированной водопроводной воде на трубки из нержавеющей стали, использованные для возбуждения. Но самое удивительное наблюдение - это то, что WFC и все его металлические трубки остались совершенно холодные на ощупь, даже после более чем 20 минут работы “.

Рис. Механизм работы электролитической ячейки С. Мейера

Таким образом, полученный результат свидетельствует об эффективном и управляемом производстве газа, которое безопасно в управлении и функционировании. А управлять производством газа позволяет увеличение и уменьшение напряжения электрода.

По мнению самого изобретателя, под воздействием электрического поля происходит поляризации молекулы воды, приводящему к разрыву связи.

Кроме обильного выделения кислорода и водорода и минимального нагревания ячейки, очевидцы также сообщают, что вода в внутри ячейки исчезает быстро, переходя в ее составные части в виде аэрозоли из огромного количества крошечных пузырьков, покрывающих поверхность ячейки.

Мэйер заявил, что конвертер водородно-кислородной смеси работает у него уже в течение последних 4 лет, и состоит из цепочки из 6 цилиндрических ячеек. Он также заявил, что фотонное стимулирование пространства реактора светом лазера посредством оптоволокна увеличивает производство газа.

Рис. Изменения молекул воды при работе установки

Эффекты, наблюдаемые при работе установки электролитического разложения воды:

-последовательность состояний молекулы воды и/или водорода/кислорода/других атомов;

-ориентация молекул воды вдоль силовых линий поля;

-поляризация молекулы воды;

-удлиннение молекулы воды;

-разрыв ковалентной связи в молекуле воды;

-освобождение газов из установки.

Причём, оптимальный выход газа достигается в резонансной схеме. Частота подбирается равной резонансной частоте молекул.

Для изготовления пластин конденсатора отдается предпочтение нержавеющей стали марки Т-304, которая не взаимодействует с водой, кислородом и водородом. Начавшийся выход газа управляется уменьшением эксплуатационных параметров. Поскольку резонансная частота фиксирована, производительностью можно управлять с помощью изменения импульсного напряжения, формы или количества импульсов.

Повышающая катушка намотана на обычном тороидальном ферритовом сердечнике 1.50 дюйма в диаметре и 0.25 дюйма толщиной. Первичная катушка содержит 200 витков 24 калибра, вторичная 600 витков 36 калибра.
Диод типа 1ISI1198 служит для выпрямления переменного напряжения. На первичную обмотку подаются импульсы скважности 2. Трансформатор обеспечивает повышение напряжения в 5 раз, хотя оптимальный коэффициент подбирается практическим путем.

Дроссель содержит 100 витков калибра 24, в диаметре 1 дюйм. В последовательности импульсов должен быть короткий перерыв.

Через идеальный конденсатор ток не течет. Рассматривая воду как идеальный конденсатор, энергия не будет расходоваться на нагрев воды.

Вода обладает некоторой остаточной проводимостью, обусловленной наличием примесей. Идеально, если вода в ячейке будет химически чистой. Электролит к воде не добавляется.

В процессе электрического резонанса может быть достигнут любой уровень потенциала, поскольку емкость зависит от диэлектрической проницаемости воды и размеров конденсатора.

Однако, следует помнить, что водород – чрезвычайно опасное взрывоопасное соединение. Его детонационная составляющая в 1000 раз сильнее бензина. Помимо всего, у Стэна Мэйера было два инфаркта, после которых он скончался, возможно, от отравления водородом.

Другой, совершенно отличный по конструкции двигатель внутреннего сгорания, работающей на воде, был разработан ещё в 1994 году нашим изобретателем В.С. Кащеевым.

На рисунке справа приведена его конструкция в разрезе.

Двигатель внутреннего сгорания на воде, разработанный изобретателем В.С. Кащеевым

Двигателя внутреннего сгорания на воде включает цилиндр 1, в котором размещен поршень 2, связанный, например, кривошипно-шатунным механизмом с коленчатым валом двигателя (на фиг. 1 не показаны). Цилиндр 1 снабжен головкой 3, образующей совместно со стенками цилиндра 1 и днищем поршня 2 камеру сгорания 4. Подпоршневая полость 5 сообщена с атмосферой. В головке 3 цилиндра установлены:

впускной клапан 6, сообщающий камеру сгорания 4 с атмосферой при движении поршня 2 от верхней мертвой точки к нижней и приводимый, например, от распределительного вала двигателя (на фиг. не показан);

обратные клапаны 7, обеспечивающие выхлоп в атмосферу продуктов из камеры сгорания 4 и герметизирующие камеру после осуществления выхлопа.

Камера сгорания 4 выполнена по крайней мере с одной предкамерой 8, в которой установлен приводимый, например, от распределительного вала клапан 9 подачи топливной смеси и свеча зажигания 10. Предпочтительно предкамеру 8 (или предкамеры) выполнить в боковой стенке цилиндра 1 над поршнем при его расположении в нижней мертвой точке.

Двигатель работает следующим образом:

При движении поршня 2 от верхней мертвой точки к нижней впускной клапан 6 открыт и камера сгорания 4 сообщена с атмосферой. Давление, действующее на обе стороны поршня 2, одинаково и равно атмосферному.

При приближении поршня 2 к нижней мертвой точке герметизируют камеру сгорания 4, закрывая впускной клапан 6; через клапаны 9 в предкамеры 8 подают топливную смесь и воспламеняют ее. В качестве топливной смеси используют стехиометрическую смесь водорода с кислородом, так называемый гремучий газ.

При сгорании топливной смеси резко повышается давление в камере сгорания 4; этим давлением открываются установленные в головке 3 цилиндра обратные клапаны 7 и происходит выхлоп в атмосферу продуктов из камеры сгорания. Давление в камере сгорания 4 резко понижается и обратные клапаны 7 закрываются, герметизируя камеру сгорания 4.

Поршень 2 атмосферным давлением, действующим со стороны подпоршневой полости 5, перемещается от нижней мертвой точки к верхней, совершая рабочий ход.

По достижении поршнем 2 верхней мертвой точки открывается впускной клапан 6 и цикл повторяется. Выбрасываемые из камеры сгорания продукты представляют собой увлажненный воздух.

Получение топливной смеси для силовой установки транспортного средства с предлагаемым двигателем внутреннего сгорания может осуществляться электролизом воды в электролизере, установленном на этом транспортном средстве.

Другой наш изобретатель москвич Михаил Весенгириев, лауреат премии журнала «Изобретатель и рационализатор», вообще предложил использовать в качестве устройства, разлагающего воду на кислород и водород самый что ни на есть обычный поршневой двигатель внутреннего сгорания (ДВС). Он утверждает, что существующие двигатели внутреннего сгорания можно заставить работать на обычной воде с помощью электродов вольтовой дуги.

Камера двигателя сгорания по-мнению изобретателя, идеально подходит для всех видов воздействия на воду, вызывающих ее диссоциацию и последующее образование рабочей смеси, ее воспламенение и утилизацию выделившейся энергии.

Для этого изобретатель М. Весенгириев предложил использовать четырехтактный ДВС (положительное решение по заявке на патент РФ № 2004111492). Он содержит один цилиндр с жидкостной системой охлаждения, поршень и головку цилиндра, образующие камеру сгорания, выпускной клапан, систему подачи электролита (водного раствора электролита) и систему зажигания. Система подачи электролита в цилиндр выполнена в виде плунжерного насоса высокого давления и форсунки с кавитатором (местное сужение канала). Причем насос высокого давления либо кинематически, либо через блок управления связан с кривошипно-шатунным механизмом двигателя.

Система зажигания выполнена в виде электродов и вольтовой дуги, установленных в камере сгорания. Зазор между ними можно регулировать, а ток на них идет от прерывателя-распределителя, также кинематически или через блок управления связанного с кривошипно-шатунным механизмом.

Перед пуском двигателя в работу бак заправляют электролитом (например, водным раствором едкого натра). Регулируя катод, устанавливают зазор между электродами. И, включив зажигание, на электроды подают постоянный ток. Затем стартером раскручивают вал двигателя.

Поршень от верхней мертвой точки (ВМТ) перемещается к нижней мертвой точке (НМТ). Выпускной клапан закрыт. В цилиндре создается разрежение. Насос высокого давления забирает из электролитного бака цикловую дозу электролита и через форсунку с кавитатором подает ее в цилиндр. В кавитаторе за счет повышения скорости и падения давления до критического значения происходит частичная диссоциация воды и тончайшее распыление капелек электролита. Затем в камере сгорания за счет протекания постоянного электрического тока через электролит происходит дополнительная, уже электролитическая диссоциация.

Поршень от НМТ перемещается к ВМТ – такт сжатия. Объем, занимаемый рабочей смесью, уменьшается, а ее температура возрастает: теперь идет уже термическая диссоциация. Третий такт – рабочий ход. Электрод пружиной и кулачково?распределительным валом (кинематически либо через блок управления связанный с кривошипно-шатунным механизмом) перемещается до соприкосновения с электродом, и зажигается вольтова дуга. Под воздействием ее тепла рабочая смесь в камере сгорания окончательно диссоциирует и воспламеняется. Расширяющиеся газы перемещают поршень от ВМТ к НМТ. Еще до прихода поршня к НМТ прерыватель-распределитель размыкает контакты, на короткое время прерывает подачу постоянного тока на электроды вольтовой дуги и тушит ее. Затем контакты прерывателя-распределителя вновь замыкаются, и постоянный ток опять поступает на электроды.

И, наконец, четвертый такт – выпуск. Поршень перемещается вверх от НМТ к ВМТ. Выпускной клапан открывает выпускное окно, и цилиндр освобождается от отработавших продуктов. В дальнейшем процесс работы двигателя беспрерывно повторяется. При этом цилиндр и головка цилиндра охлаждаются системой охлаждения двигателя. Таким образом, старый-новый ДВС может работать на воде.

Конструкции двигателей внутреннего сгорания на воде, реализуются на практике различными западными фирмами.

Например, совсем недавно Японская компания Genepax представила в Осаке (Osaka, Япония) электромобиль, который использует воду в качестве топлива. Как сообщает агентство Reuters, всего одного литра достаточно, чтобы ехать на нем в течение часа со скоростью 80 километров в час.

Как утверждает разработчик, машина может использовать воду любого качества – дождевую, речную и даже морскую. Силовая установка на топливных ячейках получила название Water Energy System (WES). Она устроена по тому же принципу, что и другие силовые установки на топливных элементах, использующие водород в качестве топлива. Главной особенностью системы Genepax является то, что она использует коллектор электродов мембранного типа (MEA), который состоит из специального материала, способного при помощи химической реакции полностью расщепить воду на водород и кислород.

Этот процесс, как утверждают разработчики, аналогичен механизму производства водорода путем реакции металлогидрида и воды. Однако главное отличие WES – это получение водорода из воды в течение длительного времени. Кроме того, MEA не требует специального катализатора, а редкие металлы, в частности платина, необходимы в том же количестве, что и в обычных фильтрующих системах бензиновых автомобилей. Также нет необходимости использовать преобразователь водорода и водородный резервуар высокого давления.

Помимо полного отсутствия вредных выбросов, силовая установка Genepax, по словам разработчика, является более долговечной, так как катализатор не портится от загрязняющих веществ.

"Автомобиль будет продолжать ехать до тех пор, пока у вас есть бутылка с водой, чтобы заправлять его время от времени", - сказал генеральный директор Genepax Киеси Хирасава (Kiyoshi Hirasawa). «Для пополнения энергией батарей не требуется создавать инфраструктуру, в частности, станции подзарядки, как для большинства современных электромобилей».

Продемонстрированный в Осаке автомобиль является единственным образцом, и будет использован для получения патента на изобретение. В будущем Genepax планирует начать сотрудничать с японскими автопроизводителями и снизить себестоимость топливных элементов за счет массового производства.

О.В.Мосин

Продолжение - в следующей статье сайта.

Сегодня мы зальём несколько капель воды в бензобак и утроим пробег автомобиля. Добудем водород из обычной воды методом электролиза, и этого хватит для обслуживания дома. А чашка морской воды, которой на Земле видимо-невидимо, решит мировой энергетический кризис. Мы обсуждаем сегодня возможность использования воды в виде альтернативного топлива.

Если вы следите за новостями, то вероятно слышали о широко нашумевших случаях извлечения энергии из воды. На вашу почту, вероятно, приходили сообщения о коварном правительстве и нефтяных компаниях, которые скрывают правду о двигателе, работающем на воде. Попробуйте погуглить фразу «двигатель на воде», и вы обнаружите массу примеров: это чисто, это бесплатно, это не выделяет углекислый газ, но наука не развивает двигатель, работающий на воде вследствие заговора молчания.

Автору приходилось слышать об устройстве гидролиза воды, которое работает от автомобильного аккумулятора. Получаемый газ добавляется в цилиндры двигателя, существенно снижая потребность в бензине и значительно повышая мощность. Так как генератор автомобиля вырабатывает 12 Вольт постоянно, источник энергии из воды неиссякаем. Fox News посвятили целую передачу, в которой двое приятелей заправляли армейский Хаммер одной только водой. Звучит впечатляюще, правда?

Не столь давно новости выдали следующую историю об энергии из воды. Пенсионер с инженерным опытом, занимаясь дома разработкой средства от рака, обнаружил, что морская вода электризованная радиоволнами, может гореть. Телерепортёры радостно подхватили новость и подняли шум. Это неудивительно, ведь морской воды полно, сжигание её не выделяет вредных веществ, а тепло от реакции можно использовать для получения электричества или многих других целей.

Можно ли использовать воду в виде топлива? Может ли решение находиться прямо под нашим носом? Или перефразируем вопрос: Могут ли столь громкие заявления не гарантировать здорового скептицизма?

Короткий ответ да, заявления о двигателях на воде гарантируют скептицизм и не дают решения проблем, о которых задумывались ранее. Использование воды в виде топлива потребляет больше энергии, чем вырабатывает. Телевизионные репортёры трубят о двигателях на воде, не анализируя научную сторону сенсации.

Давайте начнём с морской воды. Джон Канзиус (John Kanzius) носился с идеей атаковать раковые клетки радиоволнами, нацеливая металлические пластины. Во время экспериментов была замечена конденсация паров воды в пробирке, что привело к попыткам опреснять морскую воду. Это сработало. Интенсивные радиоволны приводили к электролизу воды, высвобождая водород. В ходе реакции водород может поддерживать постоянное пламя. Горение, в свою очередь, можно использовать для выработки электроэнергии. Раструм Рой (Rustum Roy), химик Университета Пенсильвании, назвал электролиз радиоволнами «наиболее значительным открытием в воде за последние 100 лет». Затраты электроэнергии для генерации радиоволн значительно превышают энергию полученного пламени, но кого это интересовало? Каким-то образом новость попала в прессу под нужным углом зрения, полностью игнорируя важнейшие вопросы получения энергии. СМИ вырвали из контекста нужную часть сказанного Роем, что полностью исказило его высказывание. Проще говоря, получение пламени Канзиуса требовало невероятных затрат электроэнергии. Вода никак не является топливом. В данном случае вода явилась элементом преобразования радиоволн в тепло. Можно было бы сказать: «Хорошо, пусть это неэффективно сейчас. Но можно работать в таком направлении и развивать тему двигателя работающего на воде. Кто может предсказать потенциал?» Если бы! Термодинамика неумолима. Затраты электроэнергии для получения радиоволн всегда будут превышать энергию пламени. Кстати, Джон Канзиус продолжает искать методы борьбы с раковыми клетками.

А как насчёт автомобильных двигателей? Используя энергию генератора, получать водород из воды, добавлять его в топливо, существенно поднимая эффективность. Наполнять бак водой одновременно с заправкой бензином, используя воду как топливо. Правильно? Нет, не правильно. Сварщик засмеял бы подобный вопрос без долгих раздумий. Кислородно – водородная горелка известна давно, она используется для сварки металлов. Основной недостаток окисления водорода это высокая взрывоопасность, вспомните взрыв при запуске «Челенджера» в 1986 году. Правда автомобилестроители не рассматривают такой вид топлива по другой причине, затраты на гидролиз воды значительно превышают энергию пламени. Но ведь сварка не самый лучший образец экономичности, да и горелка соответствует требованиям, давая температуру более 2000°C. Превышение затрат энергии на гидролиз воды в автомобиле потребует более мощную систему электроснабжения и, соответственно, более мощный двигатель. В любом случае, энергетический баланс системы с «двигателем на воде» не будет положительным.

К сожалению, вода в виде топлива не выдерживает критики. Относитесь скептически к подобным заявлением. Инженеры лучше знают физику, чем телерепортёры.

Теперь самое время сказать, что некоторые истории о двигателе на воде почти правдивы. Брюс Кровер (Bruce Crower), любитель — рационализатор гоночных двигателей из Южной Калифорнии, использует энергию пара в двигателе внутреннего сгорания. К обычному четырёхцилиндровому двигателю он приладил два дополнительных цилиндра. Зная, что ДВС впустую выбрасывает много тепловой энергии, Кровер решил задействовать её в дополнительных цилиндрах. Для этого в выпускной тракт подаётся немного воды, которая, превращаясь в пар, приводит в действие пятый цилиндр. Пара дополнительных цилиндров расположена оппозитно, назначение шестого цилиндра вытолкнуть отработку в атмосферу. В отличие от других, рассмотренных случаев, Двигатель Кровера работает. Брюс Кровер прекрасно понимает, что вода не может быть топливом. Он превращает тепло в кинетическую энергию посредством водяного пара. Что интересно, такой двигатель не требует радиатора и системы охлаждения в привычном для нас исполнении.

Итак, будьте скептичны к громким заявлениям о двигателях на водяном топливе. Скорее всего, корреспонденты не захотят портить сенсационность дотошным рассмотрением физики процесса. Требуйте доказательства и обоснование. Будьте скептичны.

Перевод Владимир Максименко 2013-2014

С каждым днём интеллектуальный мир всё больше осознает, насколько являются тупиковыми технологии, основанные на использовании ископаемого топлива.

Почему люди не меняют свой технологический образ жизни, чтобы более гармонично вписаться в планетарные экологические системы? И мы не говорим только про общеизвестные экологически чистые технологии – использование солнечной, ветровой и океанической энергии приливов. Мы говорим о технологиях более революционных, для которых сжигание ископаемого топлива – это примитивный вчерашний день.

Одной из этих «новых» передовых технологий является автомобиль с силовой установкой, основанной на расщеплении и последующем сжигании молекул воды. Этот двигатель люди постоянно изобретают уже как минимум семьдесят лет, однако только сейчас, в 21-м веке нам постепенно становится всем понятно – почему эти изобретения недоступны для масс.

Проблема таких устройств в том, что они полностью изменят способы ведения бизнеса мировыми энергетическими компаниями. Возможно, они их даже разрушат. Поэтому такие изобретения являются первой угрозой для транснациональных корпораций в энергетической отрасли.

10 лет назад, в 2008-м году (!!) , на выставке в Осаке японская компания Genepax ]]> представила свой «водный автомобиль»]]> . Для водителя этого транспортного средства не имеет значения, что у него находится в руках: бутылка газировки, стакан воды из-под крана или ведро озерной воды. Всё это можно залить в «бензобак» и оно отлично будет работать. Устройство, генерирующее топливо, расщепит эту воду на молекулы кислорода и водорода, которые будут гореть и автомобиль начнет ездить.

Реальность и практическая ценность этого автомобиля запатентована в патентных компаниях по всему миру . Нажмите ]]> ЗДЕСЬ]]> , чтобы просмотреть патент японцев на свою водную энергетическую систему. Так же вы можете провести поиск по номеру патента ** 2006-244714 **. Наконец, те же документы находятся в файле ]]> Европейского патентного ведомства]]> .

Вот короткое видео об этом японском чудо-автомобиле:

Итак, автомобиль есть. Он существует не в чертежах и на ютубе, а ездит по дорогам в реальности. Все его узлы построены и запатентованы. И это на 2008-й год!

Из этого следует, что в 2018-м году японская компания Genepax должна быть известна миру не меньше, чем первый в мире автомобильныйконвейер заводов Ford.

Но, люди 2018-го, вы что-нибудь слышали об это японской компании? Конечно, вы ничего не слышали. Через год после представления своего транспортного средства компания закрылась и разорилась.

Genepax – не единственная группа новаторов , которая пыталась продвинуть водородное топливо. Стэнли Мейер (Stanely Allen Meyer) – еще один гениальный изобретатель-одиночка. Он придумал и сам построил работающий на расщепленной воде автомобиль. Каким-то чудом история об этом человеке стала доступна для масс, попав в репортаж местной новостной станции в Огайо:

Вот еще один короткий клип Стэна, демонстрирующий его технологию:

Так что случилось с Стэнли Мейером? Его озолотили потенциальные инвесторы? Дали ему на постройку автомобилей много денег? Нет, все было не так.

Сначала, после появления в новостях Стэна и его роликов, какие-то “эксперты” стали назвать Стэна мошенником. А потом он зашел в ресторанчик на автопарковке, попил клюквенного сока, почувствовал себя плохо, вышел на улицу и там умер.

Вода является идеальным источником топлива. Молекула воды состоит из двух атомов водорода и одного атома кислорода. При пропускании через воду электрического тока с определенными параметрами, она распадается на составляющие её элементы:

При последующем горении кислорода и водорода в двигателе выход энергии получается в два с половиной раза выше, чем при сжигании бензина. При этом продуктом сгорания является водяной пар, возвращающий воду обратно в атмосферу.

Не так давно ]]> исследователи из Virginia Tech ]]> добывали водородную энергию из воды другим способом. Они обнаружили, что содержащаяся в растениях ксилоза расщепляет молекулы воды так же хорошо, как и электричество.

Еще одним направлением для исследований являются так называемые устройства свободной энергии, реализация которых станет грандиозным технологическим изменением в истории человечества. Однако вы даже не представляете, насколько огромное количество людей вовлечены в замалчивание и высмеивание информации об этих открытиях.

А финансирует эту массу уже совсем небольшая группа – люди, владеющие нефтяными, газовыми и угольными компаниями. Поэтому стоит ли удивляться, что все, кто добился какого-то успеха в альтернативной энергетике сталкивались с потоком несчастий. Их лаборатории непрерывно горели, их предприятия разорялись, а многие изобретатели вообще были искалечены или убиты.

Тем не менее, альтернативные технологии столь грандиозны, что в эпоху глобальных сетей и полной прозрачности, они рано или поздно, но проложат себе к людям дорогу. Только о технологиях электролиза воды с целью получения в качестве топлива водорода есть несколько десятков историй. Поэтому мы надеемся, что наша небольшая статья морально поддержит и вдохновит многих и многих изобретателей водородных автомобилей.

Удорожание энергоносителей стимулирует поиск более эффективных и , в том числе на бытовом уровне. Более всего умельцев–энтузиастов привлекает водород, чья теплотворная способность втрое превышает показатели метана (38.8 кВт против 13.8 с 1 кг вещества). Способ добычи в домашних условиях, казалось бы, известен – расщепление воды путем электролиза. В действительности проблема гораздо сложнее. Наша статья преследует 2 цели:

  • разобрать вопрос, как сделать водородный генератор с минимальными затратами;
  • рассмотреть возможность применения генератора водорода для отопления частного дома, заправки авто и в качестве сварочного аппарата.

Краткая теоретическая часть

Водород, он же hydrogen, – первый элемент таблицы Менделеева – представляет собой легчайшее газообразное вещество, обладающее высокой химической активностью. При окислении (то бишь, горении) выделяет огромное количество теплоты, образуя обычную воду. Охарактеризуем свойства элемента, оформив их в виде тезисов:

Для справки. Ученые, впервые разделившие молекулу воды на hydrogen и oxygen, назвали смесь гремучим газом из-за склонности к взрыву. Впоследствии она получила название газа Брауна (по фамилии изобретателя) и стала обозначаться гипотетической формулой ННО.


Раньше водородом наполняли баллоны дирижаблей, которые нередко взрывались

Из вышесказанного напрашивается следующий вывод: 2 атома водорода легко соединяются с 1 атомом кислорода, а вот расстаются весьма неохотно. Химическая реакция окисления протекает с прямым выделением тепловой энергии в соответствии с формулой:

2H 2 + O 2 → 2H 2 O + Q (энергия)

Здесь кроется важный момент, который пригодится нам в дальнейшем разборе полетов: hydrogen вступает в реакцию самопроизвольно от возгорания, а теплота выделяется напрямую. Чтобы разделить молекулу воды, энергию придется затратить:

2H 2 O → 2H 2 + O 2 - Q

Это формула электролитической реакции, характеризующая процесс расщепления воды путем подведения электричества. Как это реализовать на практике и сделать генератор водорода своими руками, рассмотрим далее.

Создание опытного образца

Чтобы вы поняли, с чем имеете дело, для начала предлагаем собрать простейший генератор по производству водорода с минимальными затратами. Конструкция самодельной установки изображена на схеме.

Из чего состоит примитивный электролизер:

  • реактор – стеклянная либо пластиковая емкость с толстыми стенками;
  • металлические электроды, погружаемые в реактор с водой и подключенные к источнику электропитания;
  • второй резервуар играет роль водяного затвора;
  • трубки для отвода газа HHO.

Важный момент. Электролитическая водородная установка работает только от постоянного тока. Поэтому в качестве источника питания применяйте сетевой адаптер, автомобильное зарядное устройство или аккумулятор. Электрогенератор переменного тока не подойдет.

Принцип работы электролизера следующий:

Чтобы своими руками сделать показанную на схеме конструкцию генератора, потребуется 2 стеклянных бутылки с широкими горлышками и крышками, медицинская капельница и 2 десятка саморезов. Полный набор материалов продемонстрирован на фото.

Из специальных инструментов потребуется клеевой пистолет для герметизации пластиковых крышек. Порядок изготовления простой:


Для запуска генератора водорода налейте в реактор подсоленную воду и включите источник питания. Начало реакции ознаменуется появлением пузырьков газа в обеих емкостях. Отрегулируйте напряжение до оптимального значения и подожгите газ Брауна, выходящий из иглы капельницы.

Второй важный момент. Слишком высокое напряжение подавать нельзя - электролит, нагревшийся до 65 °С и более, начнет интенсивно испаряться. Из-за большого количества водяного пара разжечь горелку не удастся. Подробности сборки и запуска импровизированного водородного генератора смотрите на видео:

О водородной ячейке Мейера

Если вы сделали и испытали вышеописанную конструкцию, то по горению пламени на конце иглы наверняка заметили, что производительность установки чрезвычайно низкая. Чтобы получить больше гремучего газа, нужно изготовить более серьезное устройство, называемое ячейкой Стэнли Мейера в честь изобретателя.

Принцип действия ячейки тоже основан на электролизе, только анод и катод выполнены в виде трубок, вставляющихся одна в другую. Напряжение подается от генератора импульсов через две резонансные катушки, что позволяет снизить потребляемый ток и увеличить производительность водородного генератора. Электронная схема устройства представлена на рисунке:

Примечание. Подробно о работе схемы рассказывается на ресурсе http://www.meanders.ru/meiers8.shtml.

Для изготовления ячейки Мейера потребуется:

  • цилиндрический корпус из пластмассы или оргстекла, умельцы нередко используют водопроводный фильтр с крышкой и патрубками;
  • трубки из нержавеющей стали диаметром 15 и 20 мм длиной 97 мм;
  • провода, изоляторы.

Нержавеющие трубки крепятся к основанию из диэлектрика, к ним припаиваются провода, подключаемые к генератору. Ячейка состоит из 9 или 11 трубок, помещенных в пластиковый либо плексигласовый корпус, как показано на фото.


Под ячейку Мейера можно приспособить готовый пластиковый корпус от обычного водопроводного фильтра

Соединение элементов производится по всем известной в интернете схеме, куда входит электронный блок, ячейка Мейера и гидрозатвор (техническое название – бабблер). В целях безопасности система снабжена датчиками критического давления и уровня воды. По отзывам домашних умельцев, подобная водородная установка потребляет ток порядка 1 ампера при напряжении 12 В и обладает достаточной производительностью, хотя точные цифры отсутствуют.


Принципиальная схема включения электролизера

Реактор из пластин

Высокопроизводительный генератор водорода, способный обеспечить работу газовой горелки, выполняется из нержавеющих пластин размером 15 х 10 см, количество – от 30 до 70 шт. В них просверливаются отверстия под стягивающие шпильки, а в углу выпиливается клемма для присоединения провода.

Кроме листовой нержавейки марки 316 понадобится купить:

  • резина толщиной 4 мм, стойкая к воздействию щелочи;
  • концевые пластины из оргстекла либо текстолита;
  • шпильки стяжные М10-14;
  • обратный клапан для газосварочного аппарата;
  • фильтр водяной под гидрозатвор;
  • трубы соединительные из гофрированной нержавейки;
  • гидроокись калия в виде порошка.

Пластины нужно собрать в единый блок, изолировав друг от друга резиновыми прокладками с вырезанной серединой, как показано на чертеже. Получившийся реактор плотно стянуть шпильками и подключить к патрубкам с электролитом. Последний поступает из отдельной емкости, снабженной крышкой и запорной арматурой.

Примечание. Мы рассказываем, как сделать электролизер проточного (сухого) типа. Реактор с погружными пластинами изготовить проще – резиновые прокладки ставить не нужно, а собранный блок опускается в герметичную емкость с электролитом.


Схема водородной установки мокрого типа

Последующая сборка генератора, производящего водород, выполняется по той же схеме, но с отличиями:

  1. На корпусе аппарата крепится резервуар для приготовления электролита. Последний представляет собой 7-15% раствор гидроокиси калия в воде.
  2. В «бабблер» вместо воды заливается так называемый раскислитель – ацетон либо неорганический растворитель.
  3. Перед горелкой обязательно ставится обратный клапан, иначе при плавном выключении водородной горелки обратный удар разорвет шланги и «бабблер».

Для питания реактора проще всего задействовать сварочный инвертор, электронные схемы собирать не нужно. Как устроен самодельный генератор газа Брауна, расскажет домашний мастер в своем видео:

Выгодно ли получать водород в домашних условиях

Ответ на данный вопрос зависит от сферы применения кислородно-водородной смеси. Все чертежи и схемы, публикуемые различными интернет-ресурсами, рассчитаны на выделение газа HHO для следующих целей:

  • использовать hydrogen в качестве топлива для автомобилей;
  • бездымно сжигать водород в отопительных котлах и печах;
  • применять для газосварочных работ.

Главная проблема, перечеркивающая все преимущества водородного топлива: затраты электричества на выделение чистого вещества превышают количество энергии, получаемое от его сжигания. Что бы ни утверждали приверженцы утопичных теорий, максимальный КПД электролизера достигает 50%. Это значит, что на 1 кВт полученной теплоты затрачивается 2 кВт электроэнергии. Выгода – нулевая, даже отрицательная.

Вспомним, что мы писали в первом разделе. Hydrogen – весьма активный элемент и реагирует с кислородом самостоятельно, выделяя уйму тепла. Пытаясь разделить устойчивую молекулу воды, мы не можем подвести энергию непосредственно к атомам. Расщепление производится за счет электричества, половина которого рассеивается на подогрев электродов, воды, обмоток трансформаторов и так далее.

Важная справочная информация. Удельная теплота сгорания водорода втрое выше, чем у метана, но – по массе. Если сравнивать их по объему, то при сжигании 1 м³ гидрогена выделится всего 3.6 кВт тепловой энергии против 11 кВт у метана. Ведь водород – легчайший химический элемент.

Теперь рассмотрим гремучий газ, полученный электролизом в самодельном водородном генераторе, как топливо для вышеперечисленных нужд:


Для справки. Чтобы сжигать гидроген в отопительном котле, придется основательно переработать конструкцию, поскольку водородная горелка способна расплавить любую сталь.

Заключение

Гидроген в составе газа ННО, полученный из самодельного водородного генератора, пригодится для двух целей: экспериментов и газосварки. Даже если отбросить низкий КПД электролизера и затраты на его сборку вместе с потребляемым электричеством, на обогрев здания попросту не хватит производительности. Это касается и бензинового двигателя легковой машины.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png