Свинцовые аккумуляторы являются источником энергии в машине с двигателем внутреннего сгорания. Генераторы машин содержат реле-регулятор, который не пропускает напряжение свыше 14,4 В, т.е отключает возбуждение ротора на больших оборотах двигателя. Это означает, что аккумулятор полностью зарядиться не может. Нет, если проехать 400 км, то аккумулятор зарядится, но если в день проезжать 50 км, то аккумулятор полностью так и не зарядится. В результате, обычно зимой, втягивающее реле просто щелкнет, а мотор не заведется. Естественно, что нужно либо нести аккумулятор домой и отогревать в теплой ванне, либо ставить на зарядку. Кстатит, если на улице -20С и мотор не заводится, но можно снять аккумулятор и поставить его в ванну с теплой водой. Вода не должна полностью покрывать аккумулятор. Нагрев таким образом можно добиться, чтобы электролит стал достаточно жидким, чтобы завести машину.

Для зарядки аккумулятора нужно подать на него постоянное напряжение. Выходное напряжение блока питания считается по формуле: U=2,7 В/бн - вольты на банку. Количество банок в автомобильных аккумуляторах обычно 6 - по количеству пробок для забора электролита.

Количество банок рассчитается как общее напряжение аккумулятора разделенное на два: n=U/2. Итак, получается напряжение блока питания должно быть U=2,7*6=16,2 В. Напряжение можно брать и выше - по итогу все отрегулируется током. В качестве блока выбирается трансформатор. Ток вторичной обмотки трансформатора выбирается по формуле: I=0,2*C, где С - емкость аккумулятора. Если учесть, что стандартный аккумулятор - 60 Ач, то ток через вторичку составит I=0,2*60=12 А. После трансформатора ставится выпрямительный диод - обычно на 15 А - но можно и больше, но не меньше тока вторичной обмотки трансформатора.

Однако, если дать все напряжение блока питания аккумулятору, то пластины аккумулятора сразу высыпятся. Необходимо регулирование напряжения, а следовательно - будет регулироваться и ток. Для регулирования тока необходим либо переменный резистор с толстой спиралью, подключенный последовательно с аккумулятором, либо регулятор света (диммер), включенный перед трансформатором. Для индикации тока ставится амперметр.

Если все собрано, то вначале подключаем аккумулятор к зарядному устройству, выставляем регулятор в нулевое положение и включаем трансформатор. Отключать аккумулятор от зарядного устройства при включенном зарядном нельзя - возникнет искра и может взорваться скопившийся водород. Далее выставляем ток по амперметру. Напряжение при заряде нам нисколько не интересно. Главное ток, а напряжение будет, если ток идет. Ток выставляется таким, чтобы I=0,1*С, где С - емкость аккумулятора. Для аккумулятора емкостью 60 Ач нужен ток заряда I=0,1*60=6 А. Этим током аккумулятор должен заряжаться 10 ч. Конечно, можно поставить ток 1 А и заряжать 60 ч, если есть время. Малый ток полезен аккумуляторам при зарядке, а вот большой ток может вызвать и необратимые изменения - высыпятся пластины, аккумулятор закипит. Кипение аккумулятора - негативный процесс, его нужно избегать. Если же закипание произошло, нужно отключить аккумулятор от зарядки, охладить и выставить меньший ток заряда.

Есть так называемый "уравнительный заряд" - при нем плотность электролита во всех банках становится одинаковой. Уравнительный заряд проводится после полной зарядки аккумулятора, выставляется ток I=0,15 А/бн, что для 6-ти баночного аккумулятора означает I=0,15*6=0,9 А. Этим током нужно заряжать 12 ч.

Критерием зарядки аккумулятора служит плотность электролита в его банках. Сейчас производят необслуживаемые аккумулятора, где нельзя промерить электролит и долить в него дистиллированную воду.

Однако, встречаются и обслуживаемые аккумуляторы, где сверху установлены пробки под большую крестообразную отвертку. При заряде таких аккумуляторов пробки нужно открутить, чтобы дать водороду свободно выходить. Специальным прибором - ареометром - измеряем плотность электролита в каждой банке.

У заряженного аккумулятора плотность 1,27 - 1,30 г/см 3 .

Если получилось опрокинуть аккумулятор и электролит вытек - нельзя заливать свежий электролит. Нужно собрать хоть немного электролита старого, залить в банки дистиллированную воду и на выравнивающей заряде вытягивать банки. Это достаточно длительный процесс, но верный.

Сейчас во многие аккумуляторы встраивают датчик уровня электролита. Он выполняется в виде глазка. Если посмотреть в глазок то он имеет цвет - зеленый, тогда уровень электролита высокий и аккумулятор теоретически заряжен. Если цвет глазка красный, то аккумулято либо разряжен, либо нуждается в доливке дисциллированной водой.

Эта история началась когда мы решили отправиться в лес в ночь с субботы на воскресение - у брата был день варенья, и мы его решили отметить на свежем воздухе под шашлычек и водочку. Стали собираться. Для освещения взяли пару фонарей, для наведения музыкального фона небольшую магнитолку-бумбокс. Разумеется, для всего этого купили батарейки, что обошлось нам в кругленькую сумму. С рожами счастливых идиотов мы вломились в лес и бойко приступили к сборке дров, трезво (пока еще) рассудив, что было бы неплохо наломать этих самых дров пока не стемнело. А дров надо было на два костра - для шашлыков и для обогрева - освещения места празднования. Ну что я вам хочу сказать... на следующий день мне с трудом удавалось разогнуться, поскольку для того, чтобы от костра света было достаточно туда надо постоянно подбрасывать дрова, которые надо рубить в лесу, в котором после захода солнца стало темно, как сами знаете где и батареи в фонарях приходилось экономить и освещать место пьянства костром, для которого надо рубить дрова. Я повторяюсь, да? Ну вот той ночью у меня таких повторений было очень много. В связи с чем на следующий день возникло два вопроса - "я отдыхал?" Или "где и как сделать, чтобы такого больше не случалось?"

Прежде всего батареи - ясно, что нужны аккумуляторы, но посмотрев на цены современных никель-кадмиевых аккумуляторов моя жаба категорически отказалась их покупать. Тут я вспомнил про УПС-ы - ну знаете, такие бандуры для того, чтобы ваш комп не вырубился в самый неподходящий момент, когда вы заканчиваете проходить сапера 100х100, а добрый сосед уже подключил самопальный сварочный агрегат в розетку и радостно ухмыльнувшись включил его, обесточивая, таким образом пол-дома.

Так вот, в этих бандурах применяются герметичные свинцовые аккумуляторы - их еще называют гелевыми. По стоимости они не сравнимы с Ni-Cd аккумуляторами - первые стоят значительно меньше последних. Поехал я в магазинчик и прикупил себе вполне даже средненький аккумулятор с напряжением 12 вольт и ёмкостью 7,2 ампер-часа.

Рис.1 Фото аккумулятора.

Далее все было просто - берем 10-ти ваттную автомобильную лампочку, вешаем её на длинном проводе на дерево и подключаем к сабжу - свет готов. А для подключение магнитолы ваяем простенький стабилизатор на КРЕН8А или её буржуйском аналоге LM7809, прикручиваем провода к клемам в батарейном отсеке - e voila - имеем свет и музыку. Должен вам сказать, что подобная схема уже испытывалась - хватает на всю ночь непрерывной работы и аккумулятор до конца не разряжается.

Но вы же понимаете, что все хорошо до конца не бывает - должна быть где то капелька отходов чловеческого метаболизма, которая должна отравить всю идиллию. В данном случае засада в том, что эти аккумуляторы нельзя заряжать обычными зарядными устройствами для автомобильных аккумуляторов. Обычные кислотно-свинцовые аккумуляторы заряжаются постоянным по величине током, при этом напряжение на клеммах все время растет и когда оно достигает определенной величины - электролит в аккумуляторе закипает, что свидетельствуе об окончании заряда. Давайте себе представим, что будет, когда закипит герметичный аккумулятор. Я так полагаю, что жертв и разрушений вряд ли удасться избежать. Посему эти ящики заряжают по-другому: ток заряда устанавливают равным 0,1С, где С - это ёмкость аккумулятора, причем, зарядный ток ограничивают, поскольку этот товарищ "неудовлетворенный желудочно" и готов сожрать все, что ему дают, напряжение стабилизируют и устанавливают в пределах 14-15 вольт. В процессе заряда напряжение остается практически неизменным, а ток будет уменьшаться от установленного, до 20-30мА в самом конце заряда. То есть, нужно было собрать зарядное устройство.

Возиться ужасно не хотелось, но тут выручили буржуи - ST Microelectronics - у них, оказывается есть почти готовое решение - микросхема L200C. Эта микросхема представляет собой стабилизатор напряжения с программируемым ограничителем выходного тока. Документация на эту микросхему лежит тут: www.st.com/stonline/products/literature/ds/1318.pdf Схема зарядного устроства на рисунке 2 - это практически типовая схема включения


Рис.2

Особо описывать в общем то и нечего, остановлюсь только на паре моментов. Прежде всего - токозадающие резисторы R2-R6. Их мощность должна быть не меньше указанной на схеме, а лучше больше. Ну если вы, конечно, не фанат дымовых спецэффектов и не тащитесь от вида почерневших резисторов.


Рис 3.1 Устройство на макетной плате

Микросхему, разумеется, надо установить на радиатор, причем, тоже не жадничать - все это хозяйство расчитано на долговременную работу, поэтому, чем легче будет тепловой режим элементов, тем лучше для них, а значит и для вас. Резистором R7 подстраивается выходное напряжение в пределах 14-15 вольт. Диоды лучше брать наши, отечественные в металлических корпусах, тогда их не надо устанавливать на радиаторы. Напряжение на вторичной обмотке трансформатора 15-16 вольт. Лично я никакой платы не делал, не так уж много тут деталей - собрал все на макетке. Что получилось видно на фотке.


Рис 3.2 Все в сборе, только без корпуса

Работает все, как и предсказано в теории - ток, по началу, большой, к концу заряда опустился до незначительного и в таком состоянии живет уже несколько дней. Кстати, фирма производитель рекомендует как раз такой, незначительный ток в течении длительного времени для сохранения ёмкости батареи.


Рис 4.2 Собранное устройство на плате

Скачать печатную плату в форматах LAY и Corel для плоттерной резки на пленке вы можете ниже

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DA1 Стабилизатор напряжения L200C 1 В блокнот
VD1-VD5 Диод

Д242

5 1N5400 В блокнот
C1 Электролитический конденсатор 4700 мкФ 25 В 1 В блокнот
C2 Конденсатор 1 мкФ 1 В блокнот
R1 Резистор

820 Ом

1 В блокнот
R2 Резистор

3 Ом

1 0.25 Вт В блокнот
R3 Резистор

0.33 Ом

1 2 Вт В блокнот
R4 Резистор

0.75 Ом

1 1 Вт В блокнот
R5 Резистор

1.5 Ом

1 0.5 Вт В блокнот
R6 Резистор

Привет муськовчане!
Очередной обзорчик практичного приборчика с несравненного Али. Как известно многие электронные устройства нуждаются во внешнем питании и не является таким исключением рыболовный эхолот, который сейчас есть почти у каждого рыболова, в арсенале которого есть лодка. Ну а неоспоримым и самым практичным выбором питания подобных приборов безусловно приняты свинцовые аккумуляторы. Их достоинства очевидны - они дешевы, доступны, не требуют специального ухода, легко обслуживаются, имеют большой номинал емкостей и позволяют не только питать собственно эхолот, но и рации, телефоны, радио и даже надувать лодку электронасосами.
Есть эхолот и у меня, питается от 12v, 9А/ч «батарейки», и если заряжать ее в домашних условиях проблем нет никаких, то на выезды с собой хочется брать небольшое ЗУ, которое позволяло бы при минимальных размере и весе просто выполнять одну функцию - заряжать аккумулятор. И все. Без каких либо «наворотов». Отечественное ЗУ типа «Сонар» - крайне ненадежно и стоит аж в 4 раза дороже описываемого сабжа.
А вот собственно и он


Приехал в такой невзрачной коробочке, без опознавательных знаков, инструкций и прочей мишуры за 22 дня. Заказан 5 октября, получен 27 октября. Трек отслеживался, ибо было отправлено Posti Finland.
ЗУ имеет амеровилку и крокодилы с другого конца, то есть будет переделываться однозначно.
Продавец обещает:
100% brand new и высокое качество
входное напряжение: 100 В-240 В AC 50/60 ГЦ
выходное напряжение: 14.2-14.8 В
выходной ток: 1300mA
автоматическая зарядка без перезарядки
короткое Замыкание Защиты
по сравнению с Нынешним Защиты
батареи Полярности
Разноцветные СВЕТОДИОДНЫЙ дисплей для индикации состояния
красный Светодиод на время зарядки
зеленый Светодиод Горит, когда полностью заряжен
для Внутренних и 12 В только
тип разъема: США Штекер
костюм для 12 В автомобилей и Мотоциклов батареи
Время зарядки:
12 В 5-7 ач, время зарядки составляет более 6 часов
12 В 9Ah батареи, время зарядки составляет более 10 часов
12 В 15-25Ah батареи, время зарядки составляет более 13-25 часов

Пока это совпадает с теми цифрами что указаны на оборотной стороне копруса.

Будем посмотреть как оно на само деле, а пока

Разборка

Открывается корпус на удивление легко - 4 защелки в верхней части, ни о какой герметичности речи не идет - никаких резиновых прокладок нет, кабельные вводы сделаны хорошо и имеют разное сечение, что позволяет однозначно устанавливать в корпус плату.


в крышке есть «световод» для индикаторного светодиода

Плата поближе и со всех сторон



Выполнена аккуратно, явных косяков нет, в особенности схемотехники не вдавался, но наличие мощного мосфета P40NF03L на выходе говорит о том, что с защитой от КЗ и переплюсовки продавец не наврал.
Напряжение на ХХ 15,23v


Переделка была минимальна - берем и меняем сетевую вилку вместе с проводом на евро, а крокодилы заменяем на ножевые разъемы с термоусадкой соответствующего цвета.


На вопрос «а почему вилка такая»? могу ответить, что далеко не на всех рыболовных базах есть современные розетки с заземлением, поэтому и был выбран такой демократичный вариант.

Далее ЗУ было принесено в офис и подключено к собственно потребителю. Аккумулятор был разряжен примерно на 2/3, ЗУ стартануло с тока в 0,5 А, который начал снижаться после увеличения напряжения на батарее в 13v и по мере зарядки достиг 0,1 А, после чего зеленый светодиод сообщил о том, что зарядка закончилась. Фоток много сделать не мог - работал, посему пара всего.


(ежели кому интересно что это за ящик - это кейс под эхолот, могу сделать обзор в самоделках)
Заряжался аккумулятор 7 часов, тут тоже продавец не соврал. В процессе зарядки ЗУ ощутимо, но не критично грелось поэтому и было принято решение дать ему «чутка воздуха». Что вылилось в ряды отверстий в корпусе ЗУ.


По итогу получилось вот такое компактное миниатюрное, но узкоспециализированное ЗУ для «походов» за очень небольшие деньги

Сорри, что мало измерений, токов, расчетов и пр…

Вот нарыл схемку в инете, какие версии?

Планирую купить +12 Добавить в избранное Обзор понравился +32 +47

Использованы материалы с сайтов www.jaycar.com, www.at-systems.ru, www.slt.ru. Графики и цитаты курсивом - www.at-systems.ru. Все остальное (c) klausmobile 2002. Повторение всех конструкций на страх и риск повторяющего...

1. Сначала пряники, кнуты потом…

Герметичные свинцово-кислотные аккумуляторы (SLA) – наиболее доступные по цене вторичные (перезаряжаемые) источники тока. Доступные, в нынешней экономике, означает, во-первых, наличие в продаже типовых батарей напряжением 6В и 12В, емкостью от одного до тысячи А*ч, во-вторых, то, что за 1 вечнозеленый у.е. можно купить от 1.5 до 6 Вт*ч номинальной емкости. Меньшая цифра соответствует малым батареям, большая – большим.

Что еще в плюсе? Относительно медленный саморазряд (не более 5% емкости в месяц при комнатной температуре), относительная долговечность при условии неглубоких циклов разряда. Отсутствие «памяти» (свойственной никель-кадмиевым аккумуляторам). Допускается постоянный «плавающий» подзаряд в дежурном режиме (именно так работают автомобильные аккумуляторы).

По сравнению со свинцово-кислотными аккумуляторами с жидким электролитом, герметичные аккумуляторы, естественно, выигрывают в эксплуатационной безопасности (нет вредных испарений, допустима работа в любом положении). А еще – герметичная батарея менее критична к условиям заряда, ее сложнее убить неграмотным зарядом. Дело в том, что гелевый электролит подобран так, что батарея никогда не заряжается полностью (с точки зрения химика). Стало быть, выделение газа при перезаряде не происходит, так как перезаряда просто нет. Это не значит, что о контроле режима заряда можно забыть. Нельзя. Об этом далее.

Что в минусе? Во-первых, низкая удельная емкость – 25..35 Вт*ч на килограмм массы, или 60..100 Вт*ч на литр объема. Во-вторых, существенное сокращение жизни батарей при глубоких циклах разряда, а также при систематическом разряде большими токами. В-третьих, существенная зависимость напряжения и внутреннего сопротивления от глубины цикла.

2. О преждевременной старости .

Терминология: в практике принято обозначать интенсивность разряда в виде безразмерных «единиц С». 1С (один-це) численно равен емкости батареи при разряде постоянным током в течении 20 часов. Полный разряд определяется как разряд до 1.8В на банку при комнатной температуре (т.е. до 5.4 и 10.8В для 6В и 12В батарей). Величина 1.8В установилась опытным путем как нижняя граница, при разряде ниже которой током 0.05С начинается необратимое преждевременное старение батареи.

Таким образом, если опытным путем для батареи определено, что для того, чтобы за 20 часов разрядить ее от полностью заряженного состояния (2.1-2.3В на банку) до 1.8В на банку, требуется разрядный ток 150мА, то номинальная емкость батареи устанавливается равной 3.0 А*ч (=0.15А * 20ч).

Интенсивность тока 1С для данной батареи соответствует току разряда 3А, 2С – току разряда 6А и т.п. Если ограничить разряд достижением заданного минимума напряжения, тех же 10.8В – окажется, что реальная емкость на токе 1С сократится примерно вдвое по сравнению с номинальной (cм.график). А вот порог необратимого старения при большой интенсивности разряда (1C и выше), наоборот, существенно снижается – до 8В.

Многократный разряд батареи до напряжений, находящихся ниже штриховой линии приводит к выходу батареи из строя.

На практике, SLA работают в двух режимах – буферном и циклическом. При буферном режиме работы батарея постоянно подключена к зарядному устройству. Если в электрической сети есть напряжение, то после заряда батарея в течение длительного времени находится под действием конечного напряжения заряда. Слабый ток, протекающий через батареи, компенсирует саморазряд батареи и постоянно поддерживает батарею в полностью заряженном состоянии. В случае отключения напряжения в электрической сети, батарея разряжается на подключенную к ней нагрузку. Буферный режим работы характерен для систем бесперебойного питания постоянного и переменного тока, которые широко применяются для компьютеров, коммуникаций и непрерывных производств. А также - автомобильных аккумуляторов при регулярной эксплуатации машины.

При циклическом режиме работы батарею заряжают, а затем отключают от зарядного устройства. Разряд батареи производится по мере необходимости. Циклический режим работы используется при работе различных переносных или перевозимых устройств: электрических фонарей, средств коммуникаций, измерительных приборов. Производители аккумуляторов обычно указывают в перечне технических характеристик, для какого режима работы предназначен тот или иной аккумулятор.

Стало быть, если Вы решили запитать от батарей накалы в ламповом усилителе, то это циклический режим (как приятно узнать, что всю жизнь говорил прозой…). Но значит ли это, что можно просто разряжать батарею до предельно допустимых лампами 5.7 или 11.4В? На деле, пусть этот режим заведомо безопаснее разряда до «аварийных» 5.4 или 10.8В, он при неверном выборе батареи приведет к достаточно глубоким циклам разряда, и тем самым сократит срок ее службы.

Глубина цикла разряда определяется как отношение реально отданных в нагрузку ампер-часов к ампер-часам, соответствующим разряду до порога необратимого старения. Ампер-часы в знаменателе будут совпадать с номинальной емкостью только для интенсивности разряда 0.05С. На практике, в качестве знаменателя используется именно номинальная емкость (тем более, что и постоянный ток разряда – не более, чем идеальное приближение).

Глубина цикла (если она повторяется от цикла к циклу) определяет срок службы батарей. При 100% глубине циклов срок службы SLA не превысит 200-300 циклов. Справочно, автомобильные аккумуляторы с жидким электролитом редко выдерживают более 20 глубоких циклов. При 30% глубине циклов количество их утраивается. Знаменитая Оптима гарантирует выживание при 100 циклах "в ноль" (у автора такая батарея служит четвертый год, но ни одного глубокого цикла "в ноль" так и не было...).

3. Пример из жизни

Теперь давайте считать. В каждом канале усилителя –пара ламп 6С4С (6В, 2А). Необходимо обеспечить минимальное время работы между зарядами 8 часов. При этом напряжение не должно опускаться ниже 5.7В (по ТУ лампы), глубина цикла не более 50%. Из последнего требования следует, что емкость батареи – не менее 32А*ч на канал (= 2А * 8ч / 50%) . Интенсивность разряда такой батареи 0.06С (= 32А*ч / 2). Из графика следует, что за 8 часов ее напряжение упадет всего-навсего до 12.0-12.2В. Есть запас! Но только у свежей батареи. Если Вы не забудете ее вовремя заряжать, то примерно через 500 циклов (полтора года ежедневного удовольствия) напряжение за 8 часов будет падать до тех самых 5.7В, если не хуже… Ставьте автоматику на отключение при недостаточном напряжении, обязательно ставьте! Кстати, 32А*ч подозрительно близко к значению емкости автомобильного аккумулятора (50-65 А*ч). Так что для токов 2А и выше необслуживаемый автомобильный аккумулятор – вполне обоснованная (по цене) альтернатива. Вот с экологией и безопасностью у них проблемы. С другой стороны, если большая АКБ не вписывается в конструктив, то можно совершенно без опаски запараллелить несколько меньших батарей (желательно, но не обязательно – одной серии, одного производителя, одного «возраста» с начала эксплуатации).

А может, попробовать буферный (дежурный) режим, чтоб заряжать постоянно, без какой-либо автоматики? Тумблер вверх – батарея разряжается, лампы играют, тумблер вниз – идет заряд, лампы… отключены от батарей! Нормальный режим заряда – заряд постоянным напряжением 2.4-2.5В на банку, на зажимах 6В батареи будет до 7.5В – лампы так недолго протянут (особенно если анодное питание выключено).

При буферном режиме эксплуатации ресурс батареи сильно зависит от температуры. Наиболее благоприятной температурой для батареи считается температура 15-20 градусов Цельсия. Увеличение температуры на 10 градусов уменьшает ресурс батареи вдвое. На рисунке представлена типичная зависимость ресурса от температуры для аккумуляторов с расчетным ресурсом 5 -7 лет. Резюме – не ставьте батареи в одном корпусе вместе с лампами, пентиумами и т.п. горячими объектами. Вы спросите - а как же под капотом в машине... ну, во-первых, автомобильный аккумулятор специально рассчитан на широкий диапазон температур, во-вторых, теплоемкость АКБ настолько велика, что существенно прогреть ее, даже под капотом, непросто.

В упомянутом примере, срок службы накальной батареи при ежедневных 50% циклах – полтора года. А больше можно? В реальных условиях эксплуатации стационарных аккумуляторов нужно учитывать уменьшение ресурса батареи в случае большого числа испытанных ее разрядов. Для 5-летних батарей, реальный ресурс будет не более 3-х лет, если батарея будет испытывать в среднем один 30-процентный разряд в день или один полный разряд в неделю.

4. Поподробнее о заряде

Наилучший режим заряда батареи при небольшой (не выше 75%) глубине разряда – заряд постоянным напряжением. Разные производители дают незначительно различающиеся значения, общеприемлемым является напряжение 2.4В на банку при циклическом заряде (14.4В для 12В батареи). В буферном режиме напряжение может быть меньшим, 2.3В на банку.

При заряде полностью разряженной батареи этот режим приводит к перегрузке по начальному току, поэтому используется комбинированный режим ограничения по току и напряжению. Обычно он называется режимом заряда I-U. Разряженную батарею сначала заряжают постоянным током, численно (в амперах) не превышающим 0.1-0.3 номинальной емкости батареи (в ампер-часах). Например, для батареи емкостью 100 А*час ток заряда не должен превышать 10-30 ампер. По мере заряда батареи напряжение на батарее увеличивается (при постоянном токе). После того, как напряжение на батарее достигнет конечного напряжения заряда, ток заряда начинают уменьшать, сохраняя напряжение неизменным.

Конечное напряжение заряда при температуре 20 градусов Цельсия равно 2.25-2.3 вольта на элемент батареи. Для батареи с номинальным напряжением 12 В (6 элементов) конечное напряжение заряда равно 13.5-13.8 В. Если батарея эксплуатируется при других температурах, то для увеличения ресурса батарей рекомендуется уменьшать конечное напряжение заряда до 2.2-2.25 В/эл при температуре 40 градусов и увеличивать напряжение до 2.35-2.4 В при температуре 0 градусов. Применение такой температурной компенсации зарядного напряжения позволяет увеличить ресурс батареи при 40 градусах Цельсия на 15 %.

Для полного заряда разряженной батареи рекомендуется проводить заряд в течение 24 часов. Если необходим более быстрый (в течение 8-10 часов) заряд батареи в случае циклического режима эксплуатации, конечное напряжение заряда увеличивают до 2.4-2.48 В/эл (при 20 градусах Цельсия) и обязательно ограничивают время заряда в соответствии с остаточным зарядом батареи перед зарядкой.

Зарядное устройство с постоянным напряжением тока заряда Относительно большой ток применяется на начальной стадии заряда батареи. Когда напряжение батареи достигнет установленного уровня, зарядное устройство переключается с режима постоянного тока на режим постоянного напряжения. В течение этой фазы величина зарядного тока начинает уменьшаться до уровня минимального зарядного тока, известного как поддерживающий ток.Значения, приведенные в таблице, приняты как стандартные.

Нормативные значения электрических величин для зарядного устройства с постоянным зарядным напряжением

Примечания: Для батарей, используемых в цикличном режиме, рекомендуется использовать датчик, позволяющий прервать процесс заряда по достижении предварительно заданной величины напряжения, или таймер.Температурный коэффициент необходимо принимать в расчет, если заряд батареи происходит при температурах ниже +10 0 С или выше +30 0 С

Система ускоренного заряда (только для батарей, работающих в цикличном режиме) При ускоренном заряде батареи необходимо использовать устройства, укомплектованные блоком температурной компенсации и термическим предохранителем, позволяющие предотвратить недостаточный заряд батареи при низкой температуре или ее перегрев при высокой температуре окружающей среды

Нормативные значения электрических величин для режима ускоренного заряда батареи приведены в таблице:

Примечания: На батарее должен быть установлен термостат или термический предохранитель, или необходимо использовать таймер, позволяющий вовремя прекратить процесс заряда. Максимальная величина начального зарядного тока для батарей, емкостью более 10 Ач, должна соответствовать следующему соотношению: I = C максимум

Обратите внимание на последний абзац. Он того стоит. Особенно если много батарей замурованы в плохо вентилируемом ящике – перегрев возможен даже при обычном (не ускоренном) заряде, пусть не катастрофический, но все равно сокращающий жизнь батарей.

5. Простое зарядное устройство (медленный заряд I-U)

Для заряда небольших батарей наиболее удобна типовая схема на ИС семейства LM117, LM 196, LM317 (142ЕН12, 1151ЕН1, 1157ЕН1). Источник - "Микросхемы для линейных источников питания", М, Додэка, 1998, стр.97, 122 и др.).

Порог ограничения тока задается R4 (с учетом допустимого тока и мощности рассеяния микросхемы). На практике, когда источник питания для конкретного типа батарей встраивается непосредственно в аппаратуру - регулировка предельного тока не нужна, можно вообще исключить цепь ограничения тока (Т2), передав эту функцию выходному сопротивлению фильтра источника питания.

При больших токах удобнее использовать дискретные стабилизаторы с проходными N-МДП или составными NPN транзисторами, управляемые интегральным стабилизатором. Неудобство МДП - относительно высокое пороговое напряжение - в маломощных ЗУ решается повышением напряжения основного (единственного) источника питания, в мощных (см. рисунок) - удвоителем напряжения.

Номиналы делителей стабилизатора напряжения (IC1) указаны для 6В батарей, номиналы емкостей фильтра и резисторов стабилизатора тока (Т2) - для зарядных токов не более 2.5А, что достаточно для батарей емкостью до 10-15 А*ч. Трансформатор на выходное напряжение 9В хх, ток 5А. Переключаемые шунты в цепи база-эмиттер Т2 задают предельный ток заряда. Диод D11 - диод Шоттки на ток не менее 10А - защищает от переполюсовки батарей. Настройка сводится к заданию напряжения стабилизации на эквиваленте нагрузки 10 Ом (R6) и подбору шунтов R5.

6. Источник отрицательного напряжения в автомобиле

Для питания кроссоверов и т.п. устройств на ОУ с непосредственной связью можно поставить простой импульсный источник отрицательного напряжения. А лучше - батарею. Намного лучше! Вот только батарея эта должна быть не на 12, а на 6 Вольт. Поясню. Скорее всего, батарея эта будет отдавать ток практически всегда, когда работает двигатель. А заряжаться сможет только на стоянке. Но зарядить 12В свинцовую батарею от другой 12В батареи - невозможно. Это даже не буферный режим, а голодовка. Нужен генератор, выдающий 14В, но где же его взять, на стоянке...

Для питания кроссовера с током потребления 20мА достаточно батарейки на 6В, 1.2Ач (размером чуть более пачки сигарет). Режим заряда I-U (200мА, 7.2 В). При выключенном сигнале REMOTE батарея постоянно заряжается от бортсети (минус на землю, плюс на выход стабилизатора - состояние оптронов как показано на схеме). При включении сигнала REMOTE батарея коммутируется плюсом на землю, минусом на нагрузку (шину питания ОУ). Ток заряда ограничен резистором R3 на уровне 75 мА. Полностью заряженная батарея Fiamm 10121 в таком режиме отнимает у бортсети примерно 15мА при комнатной температуре. Цепочка R7-T1 блокирует разряд батареи на делитель R5-R6 при отключении от бортсети (предполагается, конечно, что REM IN при этом снят и нагрузка от батареи отключена). Потребляемый ток по шине REMOTE 20mA. Таймер D1-C1-R1-IC1-IC2-FU1 задерживает на 2 секунды передачу сигнала REM IN на выход. Резистор R0 нужен только для разряда емкости таймера, в практических схемах его можно исключить или заменить на индикаторную цепь со светодиодом. Диоды D1-3 - любые на постоянный ток 1А.

Оптроны КР293КП9А, КР293КП3А можно заменить любыми МДП оптронами на ток не менее 200мА (293КП с литерой А). При коммутации батареи оптроном КР293КП9А с "противофазными" ключами в одном корпусе сквозного тока при коммутации я не наблюдал, при замене на другие оптроны - следует убедиться, что его нет. Предохранители FU1, FU2 - самовосстанавливающиеся на ток срабатывания 200мА. В фильтре питания на выходе источника -6В следует ограничиться минимальной емкостью, чтобы не перегрузить оптроны при коммутации они, кстати, добавляют 10 Ом к выходному сопротивлению батареи). 293 серия не для амперных токов! Это для "взрослых" реле. Это тема следующего проекта - ЦАП с полностью батарейным питанием... но об этом еще рано...

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Простое зарядное устройство (схема 1)
IC1 Линейный регулятор

LM117

1 142ЕН12 В блокнот
T1 Биполярный транзистор

КТ3102

1 В блокнот
С1 1000 мкФ 1 В блокнот
R1 Резистор

100 Ом

1 В блокнот
R2 Переменный резистор 470 Ом 1 В блокнот
R3 Резистор

1.5 кОм

1 В блокнот
R4 Резистор

1 Ом

1 для 600 мА В блокнот
АКБ 6 В 1 В блокнот
Простое зарядное устройство (схема 2)
IC1 ИС источника опорного напряжения

TL431

1 В блокнот
T1 MOSFET-транзистор

IRFP054

1 В блокнот
T2 Биполярный транзистор

КТ3102

1 В блокнот
D1-D4 Диод

КД213А

4 В блокнот
D5, D6 Диод 2 В блокнот
D7 Стабилитрон 20 В 1 В блокнот
D8 Стабилитрон 8 В 1 В блокнот
D11 Диод Шоттки 10 А 1 В блокнот
С1, С3, С6 Электролитический конденсатор 470 мкФ 3 В блокнот
С2 Электролитический конденсатор 10000 мкФ 1 В блокнот
С4 Конденсатор 1 мкФ 1 В блокнот
С5 Электролитический конденсатор 22000 мкФ 1 В блокнот
R1 Резистор

1 кОм

1 В блокнот
R2 Резистор

2 кОм

1 В блокнот
R3, R4, R8 Резистор

4.7 кОм

3 В блокнот
R5 Резистор

0.2 Ом

1 В блокнот
R6 Переменный резистор 100 Ом 1 В блокнот
R7 Резистор

100 Ом

1 В блокнот
Резистор 1 В блокнот
Резистор 1 В блокнот
Резистор 1 В блокнот
D9, D10 Светодиод 2 В блокнот
L1 Катушка индуктивности 2 мГн 1 В блокнот
TP1 Трансформатор 1 В блокнот
GB1 АКБ 1 В блокнот
Переключатель 1

В поиске ответа на вопрос "как правильно зарядить кислотно-свинцовый аккумулятор", многие люди обращаются к инструкциям от производителя, сопровождающим эту технику. Однако даже в этих документах не всегда имеется достаточное количество информации о том, как лучше всего выполнять зарядку: с помощью каких средств, при каких условиях, какое количество времени. Ответственный пользователь, желающий продлить срок службы изделия и опасающийся повредить его или вывести из строя обязан обратиться к дополнительным источникам, чтобы выяснить эти вопросы.

Определяем тип и режим работы аккумулятора

  1. Во-первых, чтобы понять, какой алгоритм зарядки подойдет конкретной АКБ, требуется определиться с классом батареи, чей принцип работы базируется на реакциях свинца в растворе серной кислоты. Она может быть либо обслуживаемой (то есть легко заряжаемой вручную), либо необслуживаемой (требующей для подзарядки подключения специальных зарядных приспособлений).
  2. Во-вторых, аккумулятор может эксплуатироваться в 2-х режимах: буферном (будучи постоянно подключенным к сети и периодически активируемым для самостоятельной) и циклическом (использование такого АКБ состоит из постоянной смены циклов "разрядка-подзарядка").

Среди обслуживаемых SLA числятся, преимущественно, классические автомобильные аккумуляторы. Основная масса свинцово-кислотных источников тока, используемых в индивидуальном электротранспорте (вроде велобайков) принадлежит к герметичным, необслуживаемым, буферным и гелевым.

Как заряжать свинцово-кислотную батарею

Процесс зарядки SLA-аккумуляторов предполагает пополнение запаса энергии устройства за счет внешних источников. Важно, чтобы батарея получала заряд, который соответствует ее емкости. Оптимальные условия, при которых происходит зарядка: температура окружающей среды в пределах +20 – +25 градусов Цельсия, иначе потребуется выполнять температурную компенсацию.

Наиболее популярный способ зарядки свинцово-кислотного аккумулятора базируется на контроле параметров "ток" и "напряжение". На первой стадии АКБ заряжают постоянным током, а когда напряжение достигнет заданного значения (указывается на лицевой панели устройства), переводят агрегат в режим поддержания постоянного напряжения.

Чтобы понять, сколько времени потребуется держать аккумулятор на зарядке, нужно знать степень разряженности АКБ, ее емкость, а также силу тока зарядного устройства.

Если устройство разряжено полностью, а ток используется по всем правилам (то есть, порядка 10-20% от емкости батареи), то на зарядку должно уйти около 10-12 часов. При снижении зарядного тока, время может возрасти, при увеличении – останется прежним. Ни в коем случае нельзя увеличивать ток на более чем 30% от емкости аккумулятора - это небезопасно для него.


Технология скоростной зарядки

Существует быстрый способ зарядки аккумулятора, в рамках которого можно за 6 часов добиться полного восстановления заряда. Это актуально для батарей, использующихся в циклическом режиме, в том числе, на и прочей технике.

Данная технология предполагает, 2 этапа:

  • сначала нужно заряжать изделие постоянным током, пока напряжение не достигнет 14,5 (плюс-минус 0,2) вольта (параметры указаны для батарей, чье номинальное напряжение равно 12 В);
  • затем нужно отсоединить зарядное или перевести его в режим функционирования, когда поддерживается напряжение 13,8 (плюс-минус 0,15) вольт.

Как заряжать герметичные свинцово кислотные аккумуляторы

Первые герметичные АКБ, не позволяющие электролиту испаряться, но и не доступные для дозаливки содержимого, стали массово производиться около 40 лет тому назад. Их эволюция привела к тому, что возникли так называемые гелевые батареи AGM, тоже принадлежащие к классу свинцово-кислотных, но считающиеся модернизированными, обладающими намного более универсальными характеристиками. Внутри этих приспособлений (по-прежнему герметичных) электролит представлен в загущенном виде, имеет желевидную консистенцию. Заменить его невозможно, однако он не проливается при повреждении оболочки, не испаряется, не несет угрозы окружающей среде. Кроме того, эксплуатировать такую батарею можно в любом положении и даже в условиях высоких вибраций. Глубокий разряд такие разработки также способны переносить без проблем.

Зарядка таких устройств имеет ряд особенностей:


Как и в ситуации со стандартными свинцово-кислотными решениями, запрещено хранить батареи AGM в разряженном виде, особенно, если напряжение каждого из компонентов, входящих в ее структуру, падает до 1,8 Вольта или ниже.

> Как зарядить свинцово кислотный аккумулятор 12 вольт?

Зачастую АКБ 12 вольт принадлежат к классу AGM и, как и все представители этой категории, допускают максимальный разряд до 30% (без деформаций и рисков для работоспособности изделия).

Для этих батарей актуально целых 3 стратегии зарядки:

  • одноступенчатая или быстрая выполняется в пределах плавающего заряда при напряжении в пределах 13,2-13,8 вольт, токе от 0,1 до 0,3С (под "С" понимается емкость конкретного аккумулятора в ампер-часах);
  • двухступенчатая – наиболее часто используемая и рекомендуемая большинством производителей, осуществляется сначала в рамках основного цикла (восстановление 80%) при 14,2-14,8В и 0,1-0,3С, а затем в рамках плавающего заряда при 13,2-13,8В;
  • трехступенчатая – позиционируется как самая эффективная, производится в 3 этапа: основной заряд при 14,2-14,8 В, накопительный – при 14,2-14,8 вольтах, плавающий – при 13,2-13,8 вольта.

Крайне важно выполнять заряду устройством, имеющим индикацию по обоим параметрам: напряжению и току. Оптимальным вариантом может стать зарядное с так называемой интеллектуальной системой управления.



Узнать больше об аккумуляторах AGM можно из этого видео-ролика:



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png