в цилиндре будет работать какая-то жидкость. А от движения поршня, так же как и в паровой машине, при помощи коленчатого вала начнут вращаться и маховик и шкив. Таким образом, будет получаться механическая

Значит, нужно только поочередно нагревать и охлаждать какую-то рабочую жидкость. Для этого и были использованы арктические контрасты: к цилиндру приключается поочередно то вода из-под- морского льда, то холодный воздух; температура жидкости в цилиндре быстро меняется, и такой двигатель начинает работать. Не важно, будут ли температуры выше или ниже нуля, нужно только, чтобы между ними была разность. При этом, конечно, рабочая жидкость для двигателя должна быть взята такая, которая не замерзала бы при самой низкой температуре.

Уже в 1937 г. был сконструирован двигатель, работающий на разности температур. Конструкция этого двигателя несколько отличалась от описанной схемы. Были сконструированы две системы труб, одна из которых должна находиться в воздухе, а другая в воде. Рабочая жидкость в цилиндре автоматически приводится в соприкосновение то с одной, то с другой системой труб. Жидкость внутри труб и цилиндра не стоит неподвижно: ее все время приводят в движение насосами. Двигатель имеет несколько цилиндров, и они поочередно приключаются к трубам. Все эти устройства дают возможность ускорить процесс нагревания и охлаждения жидкости, а стало быть, и вращение вала, к которому присоединены штоки поршней. В результате получаются такие скорости, что их можно передать через редуктор на вал электрического генератора и, таким образом, переработать тепловую энергию, полученную от разности температур, в энергию электрическую.

Первый двигатель, работающий на разности температур, удалось сконструировать только для сравнительно больших перепадов температуры, порядка 50°. Это была небольшая -танция мощностью в 100 киловатт, работавшая

на разности температур воздуха и воды из горячих источников, которые имеются кое-где на Севере.

На этой установке удалось проверить конструкцию раз-ностнотемпературного Двигателя и, самое главное, удалось накопить опытный материал. Затем был построен двигатель, использующий меньшие температурные перепады - между водой моря и холодным арктическим воздухом. Постройка разностнотемпературных станций стала возможной повсеместно.

Несколько позднее был сконструирован еще другой раз-ностнотемпературный источник электрической энергии. Но это был уже не механический двигатель, а установка, действующая подобно огромному гальваническому элементу.

Как известно, в гальванических элементах происходит химическая реакция, в результате которой получается электрическая энергия. Многие химические реакции связаны либо с выделением, либо с поглощением тепла. Можно подобрать такие электроды и электролит, что никакой реакции не будет, пока температура элементов остается неизменной. Но стоит их только подогреть, как они начнут давать ток. И тут не имеет значения абсолютная температура; важно только, чтобы температура электролита начала повышаться относительно температуры воздуха, окружающего установку.

Таким образом, и в этом случае, если такую установку поместить в холодном, арктическом воздухе и подводить к ней «теплую» морскую воду, будет получаться электрическая энергия.

Разностнотемпературные установки были уже достаточно распространены в Арктике 50-х годов. Они представляли собой довольно мощные станции.

Устанавливались эти станции на Т-образном молу, глубоко вдающемся в морской залив, Такое расположение станции сокращает трубопроводы, связывающие рабочую жидкость разностнотемнературной установки с водой моря. Для хорошей р"аЬоты установки требуется значительная глубина залива. Вблизи станции должны быть большие массы воды, чтобы при охлаждении ее вследствие отдачи тепла двигателю не происходило замерзания.

Разностнотемпёратурная электростанция

Электростанция, использующая разность температур между водой и воздухом, устанавливается на иолу, глубоко врезающемся в залив. На"крыше здания электростанции видны цилиндрические воздушные радиаторы. От воздушных радиаторов идут трубы, по которым к каждому двигателю подается рабочая жидкость. От двигателя вниз также идут трубы -к водяному радиатору, погруженному в море (на рисунке не показан). Двигатели соединены с электрическими "генераторами через редукторы (на рисунке они видны на вскрытой части здания, посредине между бвигателем ^а генератором), в которых при"помощи червячной передачи увеличивается число оборотов. От генератора электрическая энергия идет к трансформаторам, повышающим напряжение (трансформа/поры находятся в левой части

здания, не вскрытой на рисунке), а от трансформаторов--к распределительным щитам (верхний этаж на переднем плане) и затем в линию передачи. Часть электроэнергии идет к огромным нагревательным элементам, погруженным в море (на рисунке их не видно). Эти л создают незамерзающий порт.

ЕСЛИ ДВИГАТЕЛЬ ПЕРЕГРЕЛСЯ...

Весна всегда приносит автовладельцам проблемы. Они возникают не только у тех, кто всю зиму держал машину в гараже или на стоянке, после чего долго бездействовавший автомобиль преподносит сюрпризы в виде отказов систем и агрегатов. Но и у тех, кто ездит круглый год. Некоторые дефекты, "дремавшие" до поры до времени, дают о себе знать, как только столбик термометра устойчиво перевалит в область положительных температур. И один из таких опасных сюрпризов - перегрев двигателя.

Перегрев в принципе возможен в любое время года - и зимой, и летом. Но, как показывает практика, на весну приходится наибольшее число подобных случаев. Объясняется это просто. Зимой все системы автомобиля, в том числе и система охлаждения двигателя, работают в весьма тяжелых условиях. Большие перепады температур - от "минусовых" по ночам до весьма высоких рабочих после непродолжительного движения - негативно действуют на многие агрегаты и системы.

Как обнаружить перегрев?

Ответ, вроде бы, очевиден - посмотреть на указатель температуры охлаждающей жидкости. На самом деле все куда сложнее. Когда движение на дороге интенсивное, водитель не сразу замечает, что стрелка указателя сдвинулась далеко в сторону красной зоны шкалы. Однако есть ряд косвенных признаков, зная которые можно уловить момент перегрева и не глядя на приборы.

Так, если перегрев возникает из-за малого количества антифриза в системе охлаждения, то первым на это отреагирует отопитель, расположенный в высокой точке системы, - горячий антифриз перестанет туда поступать. То же произойдет и при кипении антифриза, т.к. оно начинается в самом горячем месте - в головке блока цилиндров у стенок камеры сгорания, - а образовавшиеся паровые пробки запирают проход охлаждающей жидкости к отопителю. В результате подача горячего воздуха в салон прекращается.

О том, что температура в системе достигла критического значения, точнейшим образом свидетельствует внезапно появившаясядетонация. Поскольку температура стенок камеры сгорания при перегреве значительно выше нормы, это непременно провоцирует возникновение ненормального горения. В результате перегретый двигатель при нажатии на педаль газа напомнит о неисправности характерным звонким стуком.

К сожалению, и эти признаки нередко могут остаться незамеченными: при повышенной температуре воздуха отопитель выключают, а детонацию при хорошей шумоизоляции салона можно просто не услышать. Тогда при дальнейшем движении автомобиля с перегретым двигателем начнет падать мощность, и появится стук, более сильный и равномерный, чем при детонации. Тепловое расширение поршней в цилиндре приведет к увеличению их давления на стенки и значительному росту сил трения. Если же и этот признак не будет замечен водителем, то при дальнейшей работе двигатель получит основательные повреждения, и без серьезного ремонта уже, к сожалению, не обойтись.

Отчего возникает перегрев

Внимательно присмотритесь к схеме системы охлаждения. Практически каждый ее элемент в определенных обстоятельствах может стать отправной точкой перегрева. А его первопричины в большинстве случаев такие: плохое охлаждение антифриза в радиаторе; нарушение уплотнения камеры сгорания; недостаточное количество охлаждающей жидкости, а также негерметичность в системе и, как следствие -уменьшение избыточного давления в ней.

Первая группа, помимо очевидного наружного загрязнения радиатора пылью, тополиным пухом, листвой, включает еще неисправности термостата, датчика, электродвигателя или муфты включения вентилятора. Встречается и внутреннее загрязнение радиатора, однако не из-за накипи, как бывало много лет назад после длительной эксплуатации двигателя на воде. Тот же эффект, а иной раз намного более сильный, дает применение различных герметиков для радиатора. И если последний действительно забит таким средством, то прочистить его тонкие трубки - довольно серьезная проблема. Обычно неисправности этой группы легко обнаруживаются, а чтобы доехать до стоянки или СТО, достаточно бывает пополнить уровень жидкости в системе и включить отопитель.

Нарушение уплотнения камеры сгорания - тоже довольно распространенная причина перегрева. Продукты сгорания топлива, находясь под большим давлением в цилиндре, через неплотности проникают в рубашку охлаждения и вытесняют от стенок камеры сгорания охлаждающую жидкость. Образуется горячая газовая "подушка", дополнительно нагревающая стенку. Подобная картина возникает из-за прогара прокладки головки, трещин в головке и гильзе цилиндра, деформации привалочной плоскости головки или блока, - чаще всего вследствие предшествовавшего перегрева. Определить, что подобная негерметичность имеет место, можно по запаху выхлопных газов в расширительном бачке, вытеканию антифриза из бачка при работе двигателя, быстрому повышению давления в системе охлаждения сразу после запуска, а также по характерной водомасляной эмульсии в картере. Но установить конкретно, с чем связана негерметичность, удается, как правило, только после частичной разборки двигателя.

Явная негерметичность в системе охлаждения возникает чаще всего из-за трещин в шлангах, ослабления затяжки хомутов, износа уплотнения насоса, неисправности крана отопителя, радиатора и других причин. Отметим, что течь радиатора часто появляется после "разъедания" трубок так называемым "Тосолом" неизвестного происхождения, а течь уплотнения насоса - после длительной эксплуатации на воде. Установить, что охлаждающей жидкости в системе мало, визуально так же просто, как и определить место утечки.

Негерметичность системы охлаждения в ее верхней части, в том числе из-за неисправности клапана пробки радиатора, приводит к падению давления в системе до атмосферного. Как известно, чем меньше давление, - тем ниже температура кипения жидкости. Если рабочая температура в системе близка к 100 градусам С, то жидкость может закипеть. Нередко кипение в негерметичной системе возникает даже не при работе двигателя, а после его выключения. Определить, что система действительно негерметична, можно по отсутствию давления в верхнем шланге радиатора на прогретом двигателе.

Что происходит при перегреве

Как отмечено выше, при перегреве двигателя начинается кипение жидкости в рубашке охлаждения головки блока цилиндров. Образующаяся паровая пробка (или подушка) препятствует непосредственному контакту охлаждающей жидкости с металлическими стенками. Из-за этого эффективность их охлаждения резко уменьшается, а температура значительно возрастает.

Такое явление носит обычно местный характер - вблизи области кипения температура стенки может быть заметно выше, чем на указателе (а все потому, что датчик устанавливается на наружной стенке головки). В результате в головке блока могут появиться дефекты, в первую очередь - трещины. В бензиновых двигателях - обычно между седлами клапанов, а в дизелях - между седлом выпускного клапана и крышкой форкамеры. В чугунных головках иногда встречаются и трещины поперек седла выпускного клапана. Трещины возникают также в рубашке охлаждения, например, по постелям распределительного вала или по отверстиям болтов крепления головки блока. Такие дефекты лучше устранять заменой головки, а не сваркой, которую пока не удается выполнить с высокой надежностью.

При перегреве, даже если трещин не возникло, головка блока часто получает значительные деформации. Так как по краям головка прижата к блоку болтами, а перегревается ее средняя часть, происходит следующее. У большинства современных двигателей головка изготовлена из алюминиевого сплава, который при нагреве расширяется больше, чем сталь крепежных болтов. При сильном нагреве расширение головки приводит к резкому возрастанию усилий сжатия прокладки по краям, где расположены болты, в то время как расширение перегретой средней части головки болтами не сдерживается. Из-за этого происходит, с одной стороны, деформация (провал от плоскости) средней части головки, а с другой - дополнительное обжатие и деформация прокладки усилиями, значительно превышающими эксплуатационные.

Очевидно, после охлаждения двигателя в отдельных местах, особенно у краев цилиндров, прокладка уже не будет зажата должным образом, что может вызвать течь. При дальнейшей эксплуатации такого двигателя металлическая окантовка прокладки, потеряв тепловой контакт с плоскостями головки и блока, перегревается, а затем прогорает. Особенно это характерно для двигателей со вставными "мокрыми" гильзами или если между цилиндрами слишком узкие перемычки.

В довершение всего деформация головки приводит, как правило, к искривлению оси постелей распределительного вала, расположенных в ее верхней части. И без серьезного ремонта эти последствия перегрева устранить уже не удастся.

Не менее опасен перегрев и для цилиндро-поршневой группы. Поскольку кипение охлаждающей жидкости распространяется постепенно от головки на все большую часть рубашки охлаждения, то резко снижается и эффективность охлаждения цилиндров. А это значит, что ухудшается отвод тепла от нагреваемого горячими газами поршня (тепло от него отводится в основном через поршневые кольца в стенку цилиндра). Температура поршня растет, одновременно происходит и его тепловое расширение. Поскольку поршень алюминиевый, а цилиндр, как правило, чугунный, то разница в тепловом расширении материалов приводит к уменьшению рабочего зазора в цилиндре.

Дальнейшая судьба такого двигателя известна - капитальный ремонт с расточкой блока и заменой поршней и колец на ремонтные. Перечень работ по головке блока вообще получается непредсказуемым. Лучше все-таки мотор до этого не доводить. Открывая периодически капот и проверяя уровень жидкости, можно в какой-то степени себя обезопасить. Можно. Но не на все 100 процентов.

Если двигатель все-таки перегрелся

Очевидно, надо сразу остановиться на обочине дороги или у тротуара, выключить двигатель и открыть капот - так двигатель будет охлаждаться быстрее. Кстати, на этой стадии в подобных ситуациях так поступают все водители. А вот дальше они допускают серьезные ошибки, от которых мы хотим предостеречь.

Ни в коем случае нельзя открывать пробку радиатора. На пробках иномарок не зря пишут "Never open hot" - никогда не открывайте, если радиатор горячий! Ведь это так понятно: при исправном клапане пробки система охлаждения находится под давлением. Очаг кипения расположен в двигателе, а пробка - на радиаторе или расширительном бачке. Открывая пробку, мы провоцируем выброс значительного количества горячей охлаждающей жидкости - пар вытолкнет ее наружу, как из пушки. При этом ожог рук и лица почти неизбежен -струя кипятка ударяет в капот и рикошетом - в водителя!

К сожалению, от неведения либо от отчаяния так поступают все (или почти все) водители, видимо, полагая, что тем самым разряжают ситуацию. На самом деле они, выплеснув остатки антифриза из системы, создают себе дополнительные проблемы. Дело в том, что жидкость, кипящая "внутри" двигателя, все-таки выравнивает температуру деталей, тем самым снижая ее в наиболее перегретых местах.

Перегрев двигателя - это как раз тот случай, когда, не зная, что делать, лучше не делать ничего. Минут десять-пятнадцать, по крайней мере. За это время кипение прекратится, давление в системе упадет. И тогда можно приступать к действиям.

Убедившись, что верхний шланг радиатора потерял былую упругость (значит, давления в системе нет), аккуратно открываем пробку радиатора. Теперь можно долить выкипевшую жидкость.

Делаем это аккуратно и медленно, т.к. холодная жидкость, попадая на горячие стенки рубашки головки блока, вызывает их быстрое охлаждение, что может привести к образованию трещин.

Закрыв пробку, запускаем двигатель. Наблюдая за указателем температуры, проверяем, как нагреваются верхний и нижний шланги радиатора, включается ли после прогрева вентилятор и нет ли утечек жидкости.

Самое, может быть, неприятное - отказ термостата. При этом, если клапан его "завис" в открытом положении, - беды нет. Просто двигатель будет медленнее прогреваться, поскольку весь поток охлаждающей жидкости направится по большому контуру, через радиатор.

Если же термостат остается закрытым (стрелка указателя, медленно достигнув середины шкалы, быстро устремится к красной зоне, а шланги радиатора, особенно нижний, останутся холодными), движение невозможно даже зимой - двигатель тут же снова перегреется. В этом случае нужно демонтировать термостат либо хотя бы его клапан.

Если обнаружена течь охлаждающей жидкости, ее желательно устранить или хотя бы уменьшить до разумных пределов. Обычно "течет" радиатор из-за коррозии трубок на ребрах или в местах пайки. Иногда такие трубки удается заглушить, перекусив их и загнув края пассатижами.

В случаях, когда полностью устранить серьезную неисправность в системе охлаждения на месте не удается, нужно хотя бы доехать до ближайшей СТО или населенного пункта.

Если неисправен вентилятор, можно продолжить движение с включенным на "максимум" отопителем, который берет на себя значительную часть тепловой нагрузки. В салоне будет "немножко" жарко - не беда. Как известно, "пар костей не ломит".

Хуже, если отказал термостат. Выше мы уже рассмотрели один вариант. Но если вы не можете справиться с этим прибором (не хотите, не имеете инструментов и т.п.), можно попробовать еще один способ. Начните движение, - но, как только стрелка указателя приблизится к красной зоне, выключайте двигатель и двигайтесь накатом. Когда скорость упадет, включите зажигание (легко убедиться, что по прошествии всего 10-15 секунд температура уже будет меньше), снова запустите двигатель и повторяйте все сначала, непрерывно следя за стрелкой указателя температуры.

При определенной аккуратности и подходящих дорожных условиях (нет крутых подъемов) таким способом можно проехать десятки километров, даже когда охлаждающей жидкости в системе осталось совсем мало. В свое время автору удалось таким образом одолеть около 30 км, не причинив двигателю заметного вреда.

В цилиндре двигателя с некоторой периодичностью осуществляются термодинамические циклы, которые сопровождаются непрерывным изменением термодинамических параметров рабочего тела - давления, объема, температуры. Энергия сгорания топлива при изменении объема превращается в механическую работу. Условием превращения теплоты в механическую работу является последовательность тактов. К этим тактам в двигателе внутреннего сгорания относятся впуск (наполнение) цилиндров горючей смесью или воздухом, сжатие, сгорание, расширение и выпуск. Изменяющимся объемом является объем цилиндра, который увеличивается (уменьшается) при поступательном движении поршня. Увеличение объема происходит вследствие расширения продуктов при сгорании горючей смеси, уменьшение - при сжатии нового заряда горючей смеси или воздуха. Силы давления газов на стенки цилиндра и на поршень при такте расширения превращаются в механическую работу.

Аккумулированная в топливе энергия превращается в тепловую энергию при совершении термодинамических циклов, передается стенкам цилиндров путем теплового и светового излучения, радиацией и от стенок цилиндров - охлаждающей жидкости и массе двигателя путем теплопроводности и в окружающее пространство от поверхностей двигателя свободной и вынужденной

конвекцией. В двигателе присутствуют все виды передачи теплоты, что свидетельствует о сложности происходящих процессов.

Использование теплоты в двигателе характеризуется КПД, чем меньше теплоты сгорания топлива отдается в систему охлаждения и в массу двигателя, тем больше совершается работы и выше КПД.

Рабочий цикл двигателя осуществляется за два или четыре такта. Основными процессами каждого рабочего цикла являются такты впуска, сжатия, рабочего хода и выпуска. Введение в рабочий процесс двигателей такта сжатия позволило максимально уменьшить охлаждающую поверхность и одиовремепио повысить давление сгорания топлива. Продукты горения расширяются соответственно сжатию горючей смеси. Такой процесс позволяет сократить тепловые потери в стенки цилиндров и с выпускными газами, увеличить давление газов на поршень, что значительно повышает мощностные и экономические показатели двигателя.

Реальные тепловые процессы в двигателе существенно отличаются от теоретических, основанных па законах термодинамики. Теоретический термодинамический цикл является замкнутым, обязательное условие его осуществления - передача теплоты холодному телу. В соответствии со вторым законом термодинамики и в теоретической тепловой машине полностью превратить тепловую энергию в механическую невозможно . В дизелях, цилиндры которых заполняются свежим зарядом воздуха и имеют высокие степени сжатия, температура горючей смеси в конце такта впуска составляет 310...350 К, что объясняется относительно небольшим количеством остаточных газов, в бензиновых двигателях температура впуска в конце такта составляет 340...400 К . Тепловой баланс горючей смеси при такте впуска можно представить в виде

где?) р т - количество теплоты рабочего тела в начале такта впуска; Ос.ц - количество теплоты, поступившее в рабочее тело при контакте с нагретыми поверхностями впускного тракта и цилиндра; Qo г - количество теплоты в остаточных газах.

Из уравнения теплового баланса можно определить температуру в конце такта впуска. Примем массовое значение количества свежего заряда т с з, остаточных газов - т о г При известной теплоемкости свежего заряда с Р, остаточных газов с" р и рабочей смеси с р уравнение (2.34) представляется в виде

где Т с з - температура свежего заряда перед впуском; АТ сз - подогрев свежего заряда при впуске его в цилиндр; Т г - температура остаточных газов в конце выпуска. Возможно с достаточной точностью считать, что с" р = с р и с" р - с,с р, где с; - поправочный коэффициент, зависящий от Т сз и состава смеси. При а = 1,8 и дизельном топливе

При решении уравнения (2.35) касательно Т а обозначим отношение

Формула для определения температуры в цилиндре при впуске имеет вид

Эта формула справедлива как для четырехтактных, так и для двухтактных двигателей, для двигателей с турбонаддувом температура в конце впуска рассчитывается по формуле (2.36) при условии, что q = 1. Принятое условие не вносит больших погрешностей в расчет. Значения параметров в конце такта впуска , определенные экспериментально на номинальном режиме, представлены в табл. 2.2.

Таблица 2.2

Четырехтактные ДВС

Двухтактные ДВС

Показатель

с искровым зажиганием

с прямоточной схемой газообмена

Коэффициент остаточных газов у ост

Температура отработавших газов в конце выпуска Г п К

Подогрев свежего заряда, К

Температура рабочего тела в конце впуска Т а, К

При такте впуска впускной клапан в дизеле открывается на 20...30° до прихода поршня в ВМТ и закрывается после прохождения НМТ на 40...60°. Продолжительность открытия впускного клапана составляет 240...290°. Температура в цилиндре в конце предыдущего такта - выпуска равна Т г = 600...900 К. Заряд воздуха, имеющий температуру значительно ниже, смешивается с находящимися в цилиндре остаточными газами, что снижает температуру в цилиндре в конце впуска до Т а = 310...350 К. Перепад температур в цилиндре между тактами выпуска и впуска равен АТ а. г = Т а - Т г. Поскольку Т а АТ а. т = 290...550°.

Скорость изменения температуры в цилиндре в единицу времени за такт равна:

Для дизеля скорость изменения температуры при такте впуска при п е = 2400 мин -1 и ф а = 260° составляет со д = (2,9...3,9) 10 4 град/с. Таким образом, температура в конце такта впуска в цилиндре определяется массой и температурой остаточных газов после такта выпуска и нагревом свежего заряда от деталей двигателя. Графики функции co rt =/(Д е) такта впуска для дизелей и бензиновых двигателей, представленные па рис. 2.13 и 2.14, свидетельствуют о значительно большей скорости изменения температуры в цилиндре бензинового двигателя в сравнении с дизелем и, следовательно, большей интенсивности теплового потока от рабочего тела и ее росте с увеличением частоты вращения коленчатого вала. Среднестатистическое расчетное значение скорости изменения температуры при такте впуска дизеля в пределах частоты вращения коленчатого вала 1500...2500 мин -1 равно = 2,3 10 4 ± 0,18 град/с, а у бензинового

двигателя в пределах частоты вращения 2000...6000 мин -1 - со я = = 4,38 10 4 ± 0,16 град/с. При такте впуска температура рабочего тела примерно равна рабочей температуре охлаждающей жидкости,


Рис. 2.13.


Рис. 2.14.

теплота стенок цилиндра расходуется на нагрев рабочего тела и не оказывает существенного влияния на температуру охлаждающей жидкости системы охлаждения.

При такте сжатия происходят достаточно сложные процессы теплообмена внутри цилиндра. В начале такта сжатия температура заряда горючей смеси меньше температуры поверхностей стенок цилиндра и заряд нагревается, продолжая отнимать теплоту от стенок цилиндра. Механическая работа сжатия сопровождается поглощением теплоты из внешней среды. В определенный (бесконечно малый) промежуток времени температуры поверхности цилиндра и заряда смеси выравниваются, вследствие чего теплообмен между ними прекращается. При дальнейшем сжатии температура заряда горючей смеси превышает температуру поверхностей стенок цилиндра и тепловой поток изменяет направление, т.е. теплота поступает к стенкам цилиндра. Общая отдача теплоты от заряда горючей смеси незначительна, она составляет около 1,0... 1,5 % от количества теплоты, поступающей с топливом.

Температура рабочего тела в конце впуска и его же температура в конце сжатия связаны между собой уравнением политропы сжатия:

где 8 - степень сжатия; п л - показатель политропы.

Температура в конце такта сжатия по общему правилу рассчитывается по среднему постоянному для всего процесса значению показателя политропы щ. В частном случае показатель политропы рассчитывается по балансу теплоты в процессе сжатия в виде

где и с и и" - внутренняя энергия 1 кмоля свежего заряда; и а и и" - внутренняя энергия 1 кмоля остаточных газов.

Совместное решение уравнений (2.37) и (2.39) при известном значении температуры Т а позволяет определить показатель политропы щ. На показатель политропы влияет интенсивность охлаждения цилиндра. При низких температурах охлаждающей жидкости температура поверхности цилиндра ниже, следовательно, и п л будет меньше.

Значения параметров конца такта сжатия приведены в табл. 2.3.

Таблица 23

При такте сжатия впускной и выпускной клапаны закрыты, поршень перемещается к ВМТ. Время совершения такта сжатия у дизелей при частоте вращения 1500...2400 мин -1 составляет 1,49 1СГ 2 ...9,31 КГ 3 с, что соответствует повороту коленчатого вала на угол ф (. = 134°, у бензиновых двигателей при частоте вращения 2400...5600 мин -1 и ср г = 116° - (3,45...8,06) 1(Г 4 с. Перепад температур рабочего тела в цилиндре между тактами сжатия и впуска АТ с _ а = Т с - Т а у дизелей находится в пределах 390...550 °С, у бензиновых двигателей - 280...370 °С.

Скорость изменения температуры в цилиндре за такт сжатия равна:

и для дизелей при частоте вращения 1500...2500 мин -1 скорость изменения температуры составляет (3,3...5,5) 10 4 град/с, бензиновых двигателей при частоте вращения 2000...6000 мин -1 - (3,2...9,5) х х 10 4 град/с. Тепловой поток при такте сжатия направлен от рабочего тела в цилиндре к стенкам и в охлаждающую жидкость. Графики функции со = f(n e) для дизелей и бензиновых двигателей представлены на рис. 2.13 и 2.14. Из них следует, что скорость изменения температуры рабочего тела у дизелей по сравнению с бензиновыми двигателями при одной частоте вращения выше.

Процессы теплообмена при такте сжатия обусловливаются перепадом температур между поверхностью цилиндра и зарядом горючей смеси, относительно небольшой поверхностью цилиндра в конце такта, массой горючей смеси и ограниченно коротким промежутком времени, при котором происходит теплопередача от горючей смеси к поверхности цилиндра. Предполагается, что такт сжатия не оказывает существенного влияния на температурный режим системы охлаждения.

Такт расширения является единственным тактом рабочего цикла двигателя, при котором совершается полезная механическая работа. Этому такту предшествует процесс сгорания горючей смеси. Результатом сгорания является повышение внутренней энергии рабочего тела, преобразуемой в работу расширения.

Процесс сгорания является комплексом физических и химических явлений окисления топлива с интенсивным выделением

теплоты. Для жидких углеводородных топлив (бензин, дизельное топливо) процесс сгорания представляет собой химические реакции соединения углерода и водорода с кислородом воздуха. Теплота сгорания заряда горючей смеси расходуется на нагревание рабочего тела, совершение механической работы. Часть теплоты от рабочего тела через стенки цилиндров и головку нагревает блок- картер и другие детали двигателя, а также охлаждающую жидкость. Термодинамический процесс реального рабочего процесса с учетом потерь теплоты сгорания топлива, учитывающих неполноту сгорания, теплоотдачу в стенки цилиндров и прочее, крайне сложен. В дизелях и бензиновых двигателях процесс сгорания различается и имеет свои особенности. В дизелях сгорание происходит с разной интенсивностью в зависимости от хода поршня: вначале интенсивно, а затем замедленно. В бензиновых двигателях сгорание происходит мгновенно, принято считать, что оно совершается при постоянном объеме.

Для учета теплоты по составляющим потерь, в том числе теплоотдачи в стенки цилиндров, вводится коэффициент использования теплоты сгорания Коэффициент использования теплоты определяется экспериментально, для дизелей = 0,70...0,85 и бензиновых двигателей?, = 0,85...0,90 из уравнения состояния газов в начале и конце расширения:

где - степень предварительного расширения.

Для дизелей

тогда

Для бензиновых двигателей тогда

Значения параметров в процессе сгорания и в конце такта расширения для двигателей }

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png