1. Выбор электродвигателя

Кинематическая схема редуктора:

1. Двигатель;

2. Редуктор;

3. Вал приводной;

4. Муфта предохранительная;

5. Муфта упругая.

Z 1 - червяк

Z 2 - червячное колесо

Определение мощности привода:

В первую очередь выбираем электродвигатель, для этого определяем мощность и частоту вращения.

Потребляемую мощность (Вт) привода (мощность на выходе) определяют по формуле:

передача электродвигатель приводной

Где Ft - окружная сила на барабане ленточного конвеера или звездочке пластинчатого конвейера (Н);

V - скорость движения цепи или ленты (м/с).

Мощность электродвигателя:

Где з общ - общий КПД привода.

з общ =з м?з ч.п з м з пп;

где з ч.п - КПД червячной передачи;

з м - КПД муфты;

з п3 ?КПД подшипников 3-го вала

з общ =0,98 0,8 0,98 0,99 = 0,76

Определяю мощность электродвигателя:

2. Определение частоты вращения приводного вала

диаметр барабана, мм.

По таблице (24.8) выбираем электродвигатель марки «аир132м8»

с частотой вращения

с мощность

крутящим моментом т мах /т=2,

3. Определение общего передаточного числа и разбивка его по ступеням

Выбираем из стандартного ряда

Принимаем

Проверка: подходит

4. Определение мощности, частоты вращения и крутящего момента для каждого вала

5. Определение допускаемых напряжений

Определяю скорость скольжения:

(Из параграфа 2.2 расчет передач) принимаем V s >=2…5 м/с II безоловянные бронзы и латуни, принимаемые при скорости

Суммарное время работы:

Суммарное число циклов перемены напряжений:

Червяк. Сталь 18 ХГТ цементированная и закаленная до НRC (56…63). Витки шлифованные и полированные. Профиль ZK.

Червячное колесо. Размеры червячной пары зависят от значения допускаемого напряжения [у] H для материала червячного колеса.

Допускаемые напряжения для расчета на прочность рабочих поверхностей:

Материал 2 группы. Бронза Бр АЖ 9-4. Отливка в землю

у в = 400 (МПа); у т = 200 (МПа);

Т.к. для изготовления зубчатого венца подходят оба материала, то выбираем более дешевый, а именно Бр АЖ 9-4.

Принимаю червяк с числом заходов Z 1 = 1, и червячное колесо с числом зубьев Z 2 = 38.

Определяю исходные допускаемые напряжения для расчёта зубьев червячного колеса на прочность рабочих поверхностей, предел изгибной выносливости материала зубьев и коэффициент безопасности:

у F о = 0,44?у т +0,14?у в = 0,44 200+0,14 400 = 144 (МПа);

S F = 1,75; К FE =0,1;

N FE = К FE N ? =0,1 34200000=3420000

Определяю максимальные допускаемые напряжения:

[у] F max = 0,8?у т = 0,8 200 = 160 (МПа).

6. Коэффициенты нагрузки

Определяю ориентировочное значение коэффициента нагрузки:

k I = k v I k в I ;

k в I = 0,5 (k в о +1) = 0,5 (1,1+1)=1,05;

k I = 1 1,05 = 1,05.

7. Определение расчётных параметров червячной передачи

Предварительное значение межосевого расстояния:

При постоянном коэффициенте нагрузки K Я =1,0 К hg =1;

Т не =К нg ЧT 2 ;

K Я =0,5 (K 0 Я +1)=0,5 (1,05+1)=1,025;

Безоловянные бронзы (материал II)

При К he при решение нагружения I равен 0,8

Принимаю а" w = 160 (мм).

Определяю осевой модуль:

Принимаю модуль m = 6,3 (мм).

Коэффициент диаметра червяка:

Принимаю q = 12,5.

Коэффициент смещения червяка:

Определяю углы подъёма витка червяка.

Делительный угол подъёма витка:

8. Проверочный расчёт червячной передачи на прочность

Коэффициент концентрации нагрузки:

где И - коэффициент деформации червяка;

Х - коэффициент, учитывающий влияние режима работы передачи на приработку зубьев червячного колеса и витков червяка.

для 5-го режима нагружения.

Коэффициент нагрузки:

k = k v k в = 1 1,007 = 1,007.

Скорость скольжения в зацеплении:

Допускаемое напряжение:

Расчётное напряжение:


200,08 (МПа) < 223,6 (МПа).

Расчётное напряжение на рабочих поверхностях зубьев не превышает допускаемого, следовательно, ранее установленные параметры можно принять за окончательные.

Коэффициент полезного действия:

Уточняю значение мощности на валу червяка:

Определяю силы в зацеплении червячной пары.

Окружная сила на колесе и осевая сила на червяке:

Окружная сила на червяке и осевая сила на колесе:

Радиальная сила:

F r = F t2 tgб = 6584 tg20 = 2396 (Н).

Напряжение изгиба в зубьях червячного колеса:

где У F = 1,45 - коэффициент, учитывающий форму зубьев червячных колёс.

18,85 (МПа) < 71,75 (МПа).

Проверка передачи на кратковременную пиковую нагрузку.

Пиковый момент на валу червячного колеса:

Пиковое контактное напряжение на рабочих поверхностях зубьев:

316,13 (МПа) < 400 (МПа).

Пиковое напряжение изгиба зубьев червячного колеса:

Проверка редуктора на нагрев.

Температура нагрева, установленного на металлической раме редуктора при естественном охлаждении:

где t o - температура окружающего воздуха (20 о С);

к т - коэффициент теплоотдачи, к т = 10;

А - площадь поверхности охлаждения корпуса редуктора (м 2);

А = 20 а 1,7 = 20 0,16 1,7 =0,88 (м 2).

56,6 (о С) < 90 (о С) = [t] раб

Так как температура нагрева редуктора при естественном охлаждении не превышает допустимую, то искусственного охлаждения на редуктор не требуется.

9. Определение геометрических размеров червячной передачи

Делительный диаметр:

d 1 = m q = 6,3 12,5 = 78,75 (мм).

Начальный диаметр:

d w1 = m (q+2x) =6,3 (12,5+2*0,15) = 80,64 (мм).

Диаметр вершин витков:

d a1 = d 1 +2m = 78,75+2 6,3 = 91,35=91 (мм).

Диаметр впадин витков:

d f1 = d 1 -2h* f m = 78,75-2 1,2 6,3 = 63,63 (мм).

Длина нарезной части червяка:

в = (11+0,06 z 2) m+3 m = (11+0,06 38) 6,3+3 6,3 = 102,56 (мм).

Принимаем в = 120 (мм).

Червячное колесо.

Делительный и начальный диаметр:

d 2 = d w2 = z 2 m = 38 6,3 = 239,4 (мм).

Диаметр вершин зубьев:

d a2 = d 2 +2 (1+x) m = 239,4+2 (1+0,15) 6,3 = 253,89= 254 (мм).

Диаметр впадин зубьев:

d f2 = d 2 - (h* f +x) 2m = 239,4 - (1,2+0,15) 26,3 = 222,39 (мм).

Ширина венца

в 2 ? 0,75 d a1 = 0,75 91 = 68,25 (мм).

Принимаем в 2 =65 (мм).

10. Определение диаметров валов

1) Диаметр быстроходного вала принимаем

Принимаем d=28 мм

Размер фасок вала.

Диаметр посадочной поверхности подшипника:

Принимаем

Принимаем

2) Диаметр тихоходного вала:

Принимаем d=45 мм

Для найденного диаметра вала выбираем значения:

Приблизительная высота буртика,

Максимальный радиус фаски подшипника,

Размер фасок вала.

Определим диаметр посадочной поверхности подшипника:

Принимаем

Диаметр буртика для упора подшипника:

Принимаем: .

10. Выбор и проверка подшипников качения по динамической грузоподъёмности

1. Для быстроходного вала редуктора выберем шариковые радиально-упорные однорядные подшипники средней серии 36307.

Для него имеем:

Диаметр внутреннего кольца,

Диаметр наружного кольца,

Ширина подшипника,

На подшипник действуют:

Осевая сила,

Радиальная сила.

Частота вращения:.

Требуемый ресурс работы:.

Коэффициент безопасности

Температурный коэффициент

Коэффициент вращения

Проверим условие:

2. Для тихоходного вала редуктора выберем шариковые радиально-упорные однорядные подшипники легкой серии.

Для него имеем:

Диаметр внутреннего кольца,

Диаметр наружного кольца,

Ширина подшипника,

Динамическая грузоподъёмность,

Статическая грузоподъёмность,

Предельная частота вращения при пластичной смазке.

На подшипник действуют:

Осевая сила,

Радиальная сила.

Частота вращения:.

Требуемый ресурс работы:.

Коэффициент безопасности

Температурный коэффициент

Коэффициент вращения

Коэффициент осевого нагружения:.

Проверим условие:

Определяем значение коэффициента радиальной динамической нагрузки x=0.45 и коэффициента осевой динамической нагрузки y=1,07.

Определяем эквивалентную радиальную динамическую нагрузку:

Рассчитаем ресурс принятого подшипника:

Что удовлетворяет требованиям.

12. Расчет приводного вала (наиболее нагруженного) вала на усталостную прочность и выносливость

Действующие нагрузки:

Радиальная сила

Крутящий момент -

Момент на барабане

Определим реакции опор в вертикальной плоскости.

Выполним проверку: ,

Следовательно вертикальные реакции найдены верно.

Определим реакции опор в горизонтальной плоскости.

получаем, что.

Проверим правильность нахождения горизонтальных реакций: , - верно.

Моменты в опасном сечении будут равны:

Расчёт производим в форме проверки коэффициента запаса прочности, значение которого можно принять. При этом должно выполняться условие, что, где - расчётный коэффициент запаса прочности, и - коэффициенты запаса по нормальным и касательным напряжениям, которые определим ниже.

Найдём результирующий изгибающий момент, как.

Определим механические характеристики материала вала (Сталь 45): - временное сопротивление (предел прочности при растяжении); и - пределы выносливости гладких образцов при симметричном цикле изгиба и кручении; - коэффициент чувствительности материала к асимметрии цикла напряжений.

Определим отношение следующих величин:

где и - эффективные коэффициенты концентрации напряжений, - коэффициент влияния абсолютных размеров поперечного сечения. Найдём значение коэффициента влияния шероховатости и коэффициент влияния поверхностного упрочнения.

Вычислим значения коэффициентов концентрации напряжений и для данного сечения вала:

Определим пределы выносливости вала в рассматриваемом сечении:

Рассчитаем осевой и полярный моменты сопротивления сечения вала:

где - расчётный диаметр вала.

Вычислим изгибное и касательное напряжение в опасном сечении по формулам:

Определим коэффициент запаса прочности по нормальным напряжениям:

Для нахождения коэффициента запаса прочности по касательным напряжениям определим следующие величины. Коэффициент влияния асимметрии цикла напряжений для данного сечения. Среднее напряжение цикла. Вычислим коэффициент запаса

Найдём расчётное значение коэффициента запаса прочности и сравним его с допускаемым: - условие выполняется.

13. Расчет шпоночных соединений

Расчёт шпоночных соединений заключается в проверке условия прочности материала шпонки на смятие.

1. Шпонка на тихоходном валу для колеса.

Принимаем шпонку 16х10х50

Условие прочности:

1. Шпонка на тихоходном валу для муфты.

Крутящий момент на валу, - диаметр вала,- ширина шпонки, - высота шпонки, - глубина паза вала, - глубина паза ступицы, - допускаемое напряжение на смятие, - предел текучести.

Определяем рабочую длину шпонки:

Принимаем шпонку 12х8х45

Условие прочности:

14. Выбор муфт

Для передачи крутящего момента от вала электродвигателя к быстроходному валу и предотвращения перекоса вала выбираем муфту.

Для привода ленточного конвейера наиболее подходит муфта упругая с торообразной оболочкой по ГОСТ 20884-82.

Муфта выбирается в зависимости от крутящего момента на тихоходном валу редуктора.

Муфты с торообразной оболочкой обладают большой крутильной, радиальной и угловой податливостью. Полумуфты устанавливают как на цилиндрические, так и на конические концы валов.

Допустимые для данного вида муфт значения смещений каждого вида (при условии, что смещения других видов близки к нулю): осевое мм, радиальное мм, угловое. Нагрузки, действующие на валы, могут быть определены по графикам из литературы .

15. Смазка червячной передачи и подшипников

Для смазывания передачи применена картерная система.

Определим окружную скорость вершин зубьев колеса:

Для тихоходной ступени, здесь - частота вращения червячного колеса, - диаметр окружности вершин червячного колеса

Рассчитаем предельно допустимый уровень погружения зубчатого колеса тихоходной ступени редуктора в масляную ванну: , здесь - диаметр окружностей вершин зубьев колеса быстроходной ступени.

Определим необходимый объём масла по формуле: , где - высота области заполнения маслом, и - соответственно длина и ширина масляной ванны.

Выберем марку масла И-Т-С-320 (ГОСТ 20799-88).

И - индустриальное,

Т - тяжелонагруженные узлы,

С - масло с антиокислителями, антикоррозионными и противоизносными присадками.

Смазывание подшипников происходит тем же маслом за счёт разбрызгивания. При сборке редуктора подшипники необходимо предварительно промаслить.

Список используемой литературы

1. П.Ф. Дунаев, О.П. Леликов, «Конструирование узлов и деталей машин», Москва, «Высшая школа», 1985 год.

2. Д.Н. Решетов, «Детали машин», Москва, «Машиностроение», 1989 год.

3. Р.И. Гжиров, «Краткий справочник конструктора», «Машиностроение», Ленинград, 1983 год.

4. Атлас конструкций «Детали машин», Москва, «Машиностроение», 1980 год.

5. Л.Я. Перель, А.А. Филатов, справочник «Подшипники качения», Москва, «Машиностроение», 1992 год.

6. А.В. Буланже, Н.В. Палочкина, Л.Д. Часовников, методические указания по расчёту зубчатых передач редукторов и коробок скоростей по курсу «Детали машин», часть 1, Москва, МГТУ им. Н.Э. Баумана, 1980 год.

7. В.Н. Иванов, В.С. Баринова, «Выбор и расчёты подшипников качения», методические указания по курсовому проектированию, Москва, МГТУ им. Н.Э. Баумана, 1981 год.

8. Е.А. Витушкина, В.И. Стрелов. Расчёт валов редукторов. МГТУ им. Н.Э. Баумана, 2005 год.

9. Атлас «конструкций узлов и деталей машин», Москва, издательство МГТУ им. Н.Э. Баумана, 2007 год.

Курсовая работа

Дисциплина Детали машин

Тема «Расчёт редуктора»

Введение

1. Кинематическая схема и исходные данные

2. Кинематический расчет и выбор электродвигателя

3. Расчет зубчатых колес редуктора

4. Предварительный расчет валов редуктора и выбор подшипников

5. нструктивные размеры шестерни и колеса

6. Конструктивные размеры корпуса редуктора

7. Первый этап компоновки редуктора

8. Проверка долговечности подшипника

9. Второй этап компоновки. Проверка прочности шпоночных соединений

10. Уточненный расчет валов

11. Вычерчивание редуктора

12. Посадки шестерни, зубчатого колеса, подшипника

13. Выбор сорта масла

14. Сборка редуктора

Введение

Редуктором называют механизм, состоящий из зубчатых или червячных передач, выполненный в виде отдельного агрегата и служащий для передачи вращения от вала двигателя к валу рабочей машины. Кинематическая схема привода может включать, помимо редуктора, открытые зубчатые передачи, цепные или ременные передачи. Указанные механизмы являются наиболее распространенной тематикой курсового проектирования.

Назначение редуктора – понижение угловой скорости и соответственно повышение вращающего момента ведомого вала по сравнению с ведущим. Механизмы для повышения угловой скорости, выполненные в виде отдельных агрегатов, называют ускорителями или мультипликаторами.

Редуктор состоит из корпуса (литого чугунного или сварного стального), в котором помещают элементы передачи – зубчатые колеса, валы, подшипники и т. д. В отдельных случаях в корпусе редуктора размещают также устройства для смазывания зацеплений и подшипников (например, внутри корпуса редуктора может быть помещен шестеренный масляный насос) или устройства для охлаждения (например, змеевик с охлаждающей водой в корпусе червячного редуктора).

Редуктор проектируют либо для привода определенной машины, либо по заданной нагрузке (моменту на выходном валу) и передаточному числу без указания конкретного назначения. Второй случай характерен для специализированных заводов, на которых организовано серийное производство редукторов.

Кинематические схемы и общие виды наиболее распространенных типов редукторов представлены на рис. 2.1-2.20 [Л.1]. На кинематических схемах буквой Б обозначен входной (быстроходный) вал редуктора, буквой Т – выходной (тихоходный).

Редукторы классифицируют по следующим основным признакам: типу передачи (зубчатые, червячные или зубчато-червячные); числу ступеней (одноступенчатые, двухступенчатые и т. д.); типу – зубчатых колес (цилиндрические, конические, коническо-цилиндрические и т. д.); относительному расположению валов редуктора в пространстве (горизонтальные, вертикальные); особенностям кинематической схемы (развернутая, соосная, с раздвоенной ступенью и т. д.).

Возможности получения больших передаточных чисел при малых габаритах обеспечивают планетарные и волновые редукторы.

1. Кинематическая схема редуктора

Исходные данные:

Мощность на ведущем валу транспортера

;

Угловая скорость вала редуктора

;

Передаточное число редуктора

;

Отклонение от передаточного числа

;

Время работы редуктора

.

1 – электромотор;

2 – ременная передача;

3 – муфта упругая втулочно-пальцевая;

4 – редуктор;

5 – ленточный транспортёр;

I – вал электромотора;

II – ведущий вал редуктора;

III – ведомый вал редуктора.

2. Кинематический расчет и выбор электродвигателя

2.1 По табл. 1.1 коэффициент полезного действия пары цилиндрических зубчатых колес η 1 = 0,98; коэффициент, учитывающий потери пары подшипников качения, η 2 = 0,99; КПД клиноременной передачи η 3 = 0,95; КПД плоскоременной передачи в опорах приводного барабана, η 4 = 0,99

2.2 ОбщийКПДпривода

η = η 1 η2 η 3 η 4 = 0,98∙0,99 2 ∙0,95∙0,99= 0,90

2.3 Требуемая мощность электродвигателя

= =1,88 кВт.

где P III -мощность выходного вала привода,

h-общий КПД привода.

2.4 По ГОСТ 19523-81 (см. табл. П1 приложениях [Л.1]) по требуемой мощности Р дв = 1,88кВт выбираем электродвигатель трехфазный асинхронный короткозамкнутый серии 4А закрытый, обдуваемый, с синхронной частотой вращения 750 об/мин 4А112МА8с параметрами Р дв = 2,2кВт и скольжением 6,0%.

Номинальная частота вращения

n дв.= n c (1-s)

где n c -синхронная частота вращения,

s- скольжение

2.5 Угловая скорость

= = 73,79рад/с.

2.6 Частота вращения

= = 114,64об/мин

2.7Передаточное отношение

= = 6,1

где w I -угловая скорость двигателя,

w III -угловая скорость выходного привода

2.8 Намечаем для редуктора u =1,6; тогда для клиноременной передачи

= =3,81– что находиться в пределах рекомендуемого

2.9 Крутящий момент, создаваемый на каждом валу.

кН×м.

Крутящий момент на 1-м валу М I =0,025кН×м.

P II =P I ×h p =1,88×0,95=1,786 Н×м.

рад/с кН×м.

Крутящий момент на 2-м валу М II =0,092 кН×м.

кН×м.

Крутящий момент на 3-м валу М III =0,14 кН×м.

2.10 Выполним проверку:

Определим частоту вращения на 2-м валу:

Частоты вращения и угловые скорости валов


3. Расчет зубчатых колес редуктора

Выбираем материалы для зубчатых колес такие же, как в § 12.1 [Л.1].

Для шестерни сталь 45, термообработка – улучшение, твердость НВ 260; для колеса сталь 45, термообработка – улучшение, твердость НВ 230.

Допускаемое контактное напряжение для прямозубых колес из указанных материалов определим с помощью формулы 3.9, , стр.33:

где s H limb – предел контактной выносливости;Для колеса

= МПа.

Допускаемое контактное напряжение принимаю

= 442 МПа.

Принимаю коэффициент ширины венца ψ bRe = 0,285 (по ГОСТ 12289-76).

Коэффициент К нβ , учитывающий неравномерность распределения нагрузки по ширине венца, примем по табл. 3.1 [Л.1]. Несмотря на симметричное расположение колес относительно опор, примем значение этого коэффициента, как в случае несимметричного расположения колес, так как со стороны клиноременной передачи действует сила давления на ведущий вал, вызывающая его деформацию и ухудшающая контакт зубьев: К нβ = 1,25.

В этой формуле для прямозубых передач К d = 99;

Передаточное число U=1,16;

М III -крутящий момент на 3-м валу.

Покупка моторного редуктора – инвестиции в технико-технологические бизнес-процессы, которые должны быть не только обоснованными, но и окупаемыми. А окупаемость во многом зависит от выбора мотор-редуктора для конкретных целей. Осуществляется он на основе профессионального расчета мощности, размерности, производительной эффективности, требуемого уровня нагрузки для конкретных целей использования.

Во избежание ошибок, которые могут привести к раннему износу оборудования и дорогостоящим финансовым потерям, расчет мотор-редуктора должны производить квалифицированные специалисты. При необходимости его и другие исследования для выбора редуктора могут провести эксперты компании ПТЦ «Привод».

Выбор по основным характеристикам

Длительный срок службы при обеспечении заданного уровня работы оборудования, с которым работает , – ключевая выгода при правильном выборе привода. Наша многолетняя практика показывает, что при определении требований исходить стоит из следующих параметров:

  • минимум 7 лет безремонтной работы для червячного механизма;
  • от 10–15 лет для цилиндрического привода.

В ходе определения данных для подачи заказа на производство мотор-редуктора ключевыми характеристиками являются:

  • мощность подключенного электродвигателя,
  • скорость вращения подвижных элементов системы,
  • тип питания мотора,
  • условия эксплуатации редуктора – режим работы и загрузки.

При расчете мощности электродвигателя для мотор-редуктора за основу берут производительность техники, с которой он будет работать. Производительность редукторного мотора во многом зависит от выходного момента силы и скоростью его работы. Скорость, как и КПД, может меняться при колебаниях напряжения в системе питания двигателя.

Скорость моторного редуктора – это зависимая величина, на которую влияют две характеристики:

  • передаточное число;
  • частота вращательных движений мотора.

В нашем каталоге есть редукторы с разными скоростными параметрами. Имеются модели с одним или несколькими скоростными режимами. Второй вариант предусматривает наличие системы регулирования скоростных параметров и применяется в случаях, когда во время эксплуатации редуктора необходима периодическая смена скоростных режимов.

Питание двигателя – осуществляется через подачу постоянного или переменного тока. Моторные редукторы постоянного тока рассчитаны на подключение к сети с 1 или 3 фазами (под напряжением 220 и 380В соответственно). Приводы переменного тока работают с напряжением 3, 9, 12, 24 или 27В.

Профессиональный в зависимости от эксплуатационных условий требует определения характера и частоты/интенсивности будущей эксплуатации. В зависимости от характера нагруженной деятельности, на которую рассчитан редуктор, это может быть устройство:

  • для работы в безударном режиме, с умеренными или сильными ударами;
  • с плавной системой пуска для уменьшения разрушительных нагрузок при запуске и остановке привода;
  • для продолжительной эксплуатации с частыми включениями (по количеству запусков в час).

По режиму работы мотор-редуктор может быть рассчитан на продолжительную работу двигателя без перегрева в особо тяжелом, тяжелом, среднем, легком режиме.

Выбор по типу редуктора для привода

Профессиональный расчет с целью выбора редуктора всегда начинается с проработки схемы привода (кинематической). Именно она лежит в основе соответствия выбранного оборудования условиях будущей эксплуатации. Согласно данной схеме, вы можете выбрать класс мотор-редуктора. Варианты следующие.

  • :
    • одноступенчатая передача, входной вал под прямым углом к выходному валу (скрещенное положение входного вала и выходного вала);
    • двухступенчатый механизм с расположением входного вала параллельно или перпендикулярно выходному валу (оси могут располагаться вертикально/горизонтально).
  • :
    • с параллельным положением входного вала и выходного вала и горизонтальным размещением осей (выходной вал с органом на входе находятся в одной плоскости);
    • с размещением осей входного вала и выходного в одной плоскости, но соосно (расположены под любым углом).
  • Конически-цилиндрический. В нем ось входного вала пересекается с осью выходного вала под углом 90 градусов.

Ключевое значение при выборе мотор-редуктора имеет положение выходного вала. При комплексном подходе к подбору устройства следует учитывать следующее:

  • Цилиндрический и конический моторный редуктор , имея аналогичные червячному приводу вес и размеры, демонстрирует более высокий КПД.
  • Передаваемая цилиндрическим редуктором нагрузка в 1,5–2 раза выше, чем у червячного аналога.
  • Использование конической и цилиндрической передачи возможно только при размещении по горизонтали.

Классификация по числу ступеней и типу передачи

Тип редуктора Число ступеней Тип передачи Расположение осей
Цилиндрический 1 Одна или несколько
цилиндрических
Параллельное
2 Параллельное/соосное
3
4 Параллельное
Конический 1 Коническая Пересекающееся
Коническо-цилиндрический 2 Коническая
Цилиндрическая
(одна или несколько)
Пересекающееся/
Скрещивающееся
3
4
Червячный 1 Червячная(одна
или две)
Скрещивающееся
2 Параллельное
Цилиндро-червячный или
червячно- цилиндрический
2 Цилиндрическая
(одна или две)
Червячная (одна)
Скрещивающееся
3
Планетарный 1 Два центральных
зубчатых колеса
и сателлиты (для
каждой ступени)
Соосное
2
3
Цилиндрическо-планетарный 2 Цилиндрическая
(одна или несколько)
Планетарная
(одна или несколько)
Параллельное/соосное
3
4
Коническо-планетарный 2 Коническая (одна)
Планетарная
(одна или несколько)
Пересекающееся
3
4
Червячно-планетарный 2 Червячная (одна)
Планетарная
(одна или несколько)
Скрещивающееся
3
4
Волновой 1 Волновая (одна) Соосное

Передаточное число


Определение передаточного отношения выполняют по формуле вида:

U= n вх / n вых

  • n вх – обороты входного вала (характеристика электродвигателя) в минуту;
  • n вых – требуемое число оборотов выходного вала в минуту.

Полученное частное округляется до передаточного числа из типового ряда для конкретных типов мотор-редукторов. Ключевое условие удачного выбора электродвигателя – ограничение по частоте вращения входного вала. Для всех типов приводных механизмов она не должна превышать 1,5 тыс. оборотов в минуту. Конкретный критерий частоты указывается в технических характеристиках двигателя.

Диапазон передаточных чисел для редукторов

Мощности


При вращательных движениях рабочих органов механизмов возникает сопротивление, которое приводит к трению – истиранию узлов. При грамотном выборе редуктора по показателю мощности он способен преодолевать это сопротивление. Потому этот момент имеет большое значение, когда нужно купить мотор-редуктор с долгосрочными целями.

Сама мощность – Р – считается как частное от силы и скорости редуктора. Формула выглядит так:

  • где:
    M – момент силы;
  • N – обороты в минуту.

Для выбора нужного мотор-редуктора необходимо сопоставить данные по мощности на входе и выходе – Р1 и Р2 соответственно. Расчет мощности мотор-редуктора на выходе рассчитывается так:

  • где:
    P – мощность редуктора;
    Sf – эксплуатационный коэффициент, он же сервис-фактор.

На выходе мощность редуктора (P1 > P2) должна быть ниже, чем на входе. Норма данного неравенства объясняется неизбежными потерями производительности при зацеплении в результате трения деталей между собой.

При расчете мощностей обязательно применять точные данные: из-за разных показателей КПД вероятность ошибки выбора при использовании приблизительных данных близится к 80%.

Расчет КПД

КПД мотор-редуктора является частным деления мощности на выходе и на входе. Рассчитывается в процентах, формула имеет вид:

ñ [%] = (P2/P1) * 100

При определении КПД следует опираться на следующие моменты:

  • величина КПД прямо зависит от передаточного числа: чем оно выше, тем выше КПД;
  • в ходе эксплуатации редуктора его КПД может снизиться – на него влияет как характер или условия эксплуатации, так и качество используемой смазки, соблюдение графика плановых ремонтов, своевременное обслуживание и т. д.

Показатели надежности

В таблице ниже приведены нормы ресурса основных деталей мотор-редуктора при длительной работе устройства с постоянной активностью.

Ресурс

Купить мотор-редуктор

ПТЦ «Привод» – производитель редукторов и мотор-редукторов с разными характеристиками и КПД, которому не безразличны показатели окупаемости его оборудования. Мы постоянно работаем не только над повышением качества нашей продукции, но и над созданием самых комфортных условий ее приобретения для вас.

Специально для минимизации ошибок выбора нашим клиентам предлагается интеллектуальный . Чтобы воспользоваться этим сервисом, не нужны специальные навыки или знания. Инструмент работает в режиме онлайн и поможет вам определиться с оптимальным типом оборудования. Мы же предложим лучшую цену мотор-редуктора любого типа и полное сопровождение его доставки.

Расчет мощности и подбор мотор - редуктора

Мощность двигателя для преодоления сопротивлений передвижению определяем по формуле

где: V - скорость передвижения крана, м/с.

з - КПД привода. Ориентировочно - 0,9, /3/;

Так как привод механизма состоит из двух раздельных мотор-редукторов, то мощность каждого определяем по формуле:

Подбор мотор-редуктора производим, также по такой величине, как частота вращения выходного вала, которую определяем через частоту вращения колеса, определяемую по формуле

где - диаметр колеса, м;

V - скорость передвижения крана, м/мин;

Принимаем мотор - редуктор типа МП 3 2 ГОСТ 21356 - 75:

МП 3 2 - 63, /1/, имеющего следующие характеристики:

Номинальная мощность, кВт 5,50

Номинальная частота вращения выходного вала, мин- 1 45

Допустимый вращающий момент на выходном валу, Н*м 1000

Тип электродвигателя 4А112М4Р3

Частота вращения электродвигателя, мин- 1 1450

Диаметр конца выходного вала, мм 55

Масса мотор - редуктор, кг 147

Очевидно, что применение мотор - редуктора вместо обычной схемы позволяет снизить вес привода почти в три раза, и тем самым снизить стоимость реконструкции.

Подбор муфты

Для соединения валов мотор - редуктора и колеса принимаем муфту упругую втулочно-пальцевую МУВП-320. Проверим муфту по крутящему моменту, по формуле:

Где К - коэффициент режима работы, К=2,25, /3/;

Крутящий момент на валу муфты, Н*М;

Максимальный крутящий момент, передаваемый муфтой, Нм 4000

Момент инерции муфты, кг·м 2; 0,514

Масса, кг 13,3

Расчет тормозного момента и выбор тормоза

Тормозной момент, по которому подбирается тормоз механизма передвижения, должен быть таким, чтобы обеспечить остановку крана на определенном тормозном пути.

С другой стороны, он не должен быть слишком большим, иначе в процессе торможения может произойти пробуксовывание колес относительно рельса. Поэтому максимальный тормозной момент определяется из условия достаточного сцепления ходовых колес с рельсом.

Максимально допустимое значение, при котором обеспечивается заданный запас сцепления колес с рельсом, равный 1,2; для механизмов передвижения мостовых кранов /3/, определяем по формуле (10):

Принимаем движение при торможении равнозамедленным, получим минимальное время торможения по формуле (11):

Зная время торможения, определим необходимый тормозной момент по формуле:


Где - общая масса крана, кг;

Диаметр ходового колеса, м;

Частота вращения двигателя, мин- 1 ;

Передаточное число редуктора;

з - КПД привода;

(?J)I - суммарный момент инерции;

Где момент инерции ротора, кг*м 2 ;0,040. /10/;

Момент инерции муфты и тормозного шкива: 0,095 кг*м 2 , /3/;

(?J)I = 0,040+0,095=0,135 ;

Определим диаметр тормозного шкива по формуле (28):

Ширина тормозного шкива, мм 95

Диаметр вала, мм 42

Масса, кг 9,2

По определенному тормозному моменту принимаем тормоз ТКГ - 200, имеющего следующие характеристики /11/:

Номинальный тормозной момент, Н*М 250

Диаметр тормозного шкива, мм 200

Ход толкателя, мм 32

Отход колодки, мм 1,0

Тип толкателя, ТГМ-25

Масса, кг 37,6

Проверка на сцепление ходовых колес с рельсом

Проверку на сцепление ходовых колес с рельсом осуществляем по условию (3.13); ускорение пуска определяем по формуле (3.14); для этого по формуле (3.15) определим время пуска; по формуле (3.16) определим момент сопротивления движению крана без груза:

Определим средний пусковой момент по формуле

Где - номинальный момент двигателя, Нм;

Определим номинальный момент по формуле:

Где - мощность двигателя,кВт;

Частота вращения вала двигателя, мин - 1 ;


Условие К сц?1,2 выполняется, пробуксовка ведущих колес крана исключена.

Проверка электродвигателя по условию пуска

Полученное значение времени пуска может удовлетворять условию сцепления ходовых колес с рельсом, но не удовлетворять условию пуска электродвигателя.

Осуществим проверку двигателя по условию пуска, которое записывается:

Где [f] - допустимый коэффициент перегрузки,

[f] = 2,0; /10/;

Пусковой момент двигателя, Нм.

Условие f < [f] выполняется. По условию пуска электродвигатель подходит.


Задание на проектирование 3

1. Выбор электродвигателя, кинематический и силовой расчет привода 4

2. Расчет зубчатых колес редуктора 6

3. Предварительный расчет валов редуктора 10

4. КОМПОНОВКА РЕДУКТОРА 13

4.1. Конструктивные размеры шестерни и колес 13

4.2. Конструктивные размеры корпуса редуктора 13

4.3.Компановка редуктора 14

5.ПОДБОР И ПРОВЕРКА ДОЛГОВЕЧНОСТИ ПОДШИПНИКА, ОПОРНЫЕ РЕАКЦИИ 16

5.1. Ведущий вал 16

5.2.Ведомый вал 18

6.ЗАПАС УСТАЛОСТНОЙ ПРОЧНОСТИ. Уточненный расчет валов 22

6.1.Ведущий вал 22

6.2.Ведомый вал: 24

7. Расчет шпонок 28

8.ВЫБОР СМАЗКИ 28

9.СБОРКА РЕДУКТОРА 29

ЛИТЕРАТУРА 30

Задание на проектирование

Спроектировать одноступенчатый горизонтальный цилиндрический косозубый редуктор для привода к ленточному конвейеру.

Кинематическая схема:

1. Электродвигатель.

2. Муфта электродвигателя.

3. Шестерня.

4. Колесо.

5. Муфта барабана.

6. Барабан ленточного конвейера.

Технические требования: мощность на барабане конвейера Р б =8,2 кВт, частота вращения барабана n б =200 об/мин.

1. Выбор электродвигателя, кинематический и силовой расчет привода

КПД пары цилиндрических зубчатых колес η з = 0,96; коэффициент, учитывающий потери пары подшипников качения, η п.к = 0,99; КПД муфты η м = 0,96.

Общий КПД привода

η общ м 2 ·η п.к 3 ·η з = 0,97 2 ·0,99 3 ·0,96=0,876

Мощность на валу барабана Р б =8,2 кВт, n б =200 об/мин. Требуемая мощность электродвигателя:

Р дв =
=
=
9.36 кВт

N дв = n б ·(2...5)=
= 400…1000 об/мин

Выбираем электродвигатель, исходя из требуемой мощности Р дв =9,36 кВт, электродвигатель трехфазный короткозамкнутый серии 4А, закрытый, обдуваемый, с синхронной частотой вращения 750 об/мин 4А160M6У3, с параметрами Р дв =11,0 кВт и скольжением 2,5% (ГОСТ 19523-81). Номинальная частота вращения двигателя:

n дв = об/мин.

Передаточное число i = u = n ном / n б = 731/200=3,65

Определяем частоты вращения и угловые скорости на всех валах привода:

n дв = n ном = 731 об/мин

n 1 = n дв = 731 об/мин

об/мин

n б = n 2 = 200,30 об/мин

где - частота вращения электродвигателя;

- номинальная частота вращения электродвигателя;

- частота вращения быстроходного вала;

- частота вращения тихоходного вала;

i = u - передаточное число редуктора;

- угловая скорость электродвигателя;

-угловая скорость быстроходного вала;

-угловая скорость тихоходного вала;

-угловая скорость приводного барабана.

Определяем мощность и вращающий момент на всех валах привода:

Р дв треб = 9,36 кВт

Р 1 дв ·η м = 9.36·0,97=9,07 кВт

Р 2 1 ·η п.к 2 ·η з = 9,07·0,99 2 ·0,96=8,53 кВт

Р б 2 · η м ·η п.к = 8.53·0,99·0,97=8,19 кВт

где
- мощность электродвигателя;

- мощность на валу шестерни;

- мощность на валу колеса;

- мощность на валу барабана.

Определяем вращающий момент электродвигателя и вращающие моменты на всех валах привода:

где - вращающий момент электродвигателя;

- вращающий момент быстроходного вала;

- вращающий момент тихоходного вала;

- вращающий момент приводного барабана.

2. Расчет зубчатых колес редуктора

Для шестерни и колеса выбираем материалы со средними механическими характеристиками:

Для шестерни сталь 45, термическая обработка – улучшение, твердость НВ 230;

Для колеса – сталь 45, термическая обработка – улучшение, твердость НВ 200.

Рассчитываем допускаемые контактные напряжения по формуле:

,

где σ H lim b – предел контактной выносливости при базовом числе циклов;

К HL – коэффициент долговечности;

– коэффициент безопасности.

Для углеродистых сталей с твердостью поверхностей зубьев менее НВ 350 и термической обработкой (улучшением)

σ H lim b = 2НВ+70;

К HL принимаем равным 1, т.к. проектируемый срок службы более 5 лет; коэффициент безопасности =1,1.

Для косозубых колес расчетное допускаемое контактное напряжение определяется по формуле:

для шестерни
= МПа

для колеса =
МПа.

Тогда расчетное допускаемое контактное напряжение

Условие
выполнено.

Межосевое расстояние из условий контактной выносливости активных поверхностей зубьев найдем по формуле:

,

где
- твердость поверхностей зубьев. Для симметричного расположения колес относительно опор и при твердости материала ≤350НВ принимаем в интервале (1 – 1,15). Примем =1,15;

ψ ba =0,25÷0,63 – коэффициент ширины венца. Принимаем ψ ba = 0,4;

K a = 43 – для косозубых и шевронных передач;

u - передаточное число. и = 3,65;

.

Принимаем межосевое расстояние
, т.е. округляем до ближайшего целого числа.

Нормальный модуль зацепления принимаем по следующей рекомендации:

m n =
=
мм;

принимаем по ГОСТ 9563-60 m n =2 мм.

Примем предварительно угол наклона зубьев β = 10 о и рассчитаем число зубьев шестерни и колеса:

Z1=

Принимаем z 1 = 34, тогда число зубьев колеса z 2 = z 1 · u = 34·3.65=124,1. Принимаем z 2 = 124.

Уточняем значение угла наклона зубьев:

Основные размеры шестерни и колеса:

диаметры делительные:

Проверка:
мм;

диаметры вершин зубьев:

d a 1 = d 1 +2 m n =68,86+2·2=72,86 мм;

d a 2 = d 2 +2 m n =251,14+2·2=255,14 мм;

диаметры впадин зубьев:d f 1 = d 1 - 2 m n =68,86-2·2=64,86 мм;

d f 2 = d 2 - 2 = 251,14-2·2=247,14 мм;

определяем ширину колеса : b 2=

определяем ширину шестерни: b 1 = b 2 +5мм =64+5=69 мм.

Определяем коэффициент ширины шестерни по диаметру:

Окружная скорость колес и степень точности передачи:

При такой скорости для косозубых колёс принимаем 8-ю степень точности, где коэффициент нагрузки равен:

К Нβ принимаем равным 1,04.

, т.к. твердость материала меньше 350НВ.

Таким образом, K H = 1,04·1,09·1,0=1,134.

Проверяем контактные напряжения по формуле:

Рассчитываем перегруз:

Перегруз в пределах нормы.

Силы, действующие в зацеплении:

окружная:

;

радиальная:

где
=20 0 -угол зацепления в нормальном сечении;

=9,07 0 -угол наклона зубьев.

Проверяем зубья на выносливость по напряжениям изгиба по формуле:

.

,

где
=1,1 – коэффициент, учитывающий неравномерность распределения нагрузки по длине зуба (коэффициент концентрации нагрузок);

=1,1 – коэффициент, учитывающий динамическое действие нагрузки (коэффициент динамичности);

Коэффициент, учитывающий форму зуба и зависящий от эквивалентного числа зубьев

Допускаемое напряжение по формуле

.

Для стали 45 улучшенной при твердости НВ≤350 σ 0 F lim b =1,8 НВ.

Для шестерни σ 0 F lim b =1,8·230=415 МПа; для колеса σ 0 F lim b =1,8·200=360 МПа.

=΄˝ - коэффициент безопасности, где ΄=1,75, ˝=1 (для поковок и штамповок). Следовательно, .=1,75.

Допускаемые напряжения:

для шестерни
МПа;

для колеса
МПа.

Находим отношение
:

для шестерни
;

для колеса
.

Дальнейший расчет следует вести для зубьев колеса, для которого найденное отношение меньше.

Определяем коэффициенты Y β и K Fα:

где К - коэффициент, учитывающий неравномерность распределения нагрузки между зубьями;

=1,5 - коэффициент торцового перекрытия;

n=8 -степень точности зубчатых колес.

Проверяем прочность зуба колеса по формуле:

;

Условие прочности выполнено.

3. Предварительный расчет валов редуктора

Диаметры валов определяем по формуле:

.

Для ведущего вала [τ к ] = 25 МПа; для ведомого [τ к ] = 20 МПа.

Ведущий вал:

Для двигателя марки 4А 160М6У3 =48 мм. Диаметр вала d в1 =48

Примем диаметр вала под подшипниками d п1 =40 мм

Диаметр муфты d м =0,8·=
=38,4 мм. Принимаем d м =35 мм.

Свободный конец вала можно определить по приближенной формуле:

,

где d п диаметр вала под подшипник.

Под подшипниками принимаем:

Тогда l =

Схематичная конструкция ведущего вала изображена на рис. 3.1.

Рис. 3.1. Конструкция ведущего вала

Ведомый вал.

Диаметр выходного конца вала:

, принимаем ближайшее значение из стандартного ряда

Под подшипниками берем

Под зубчатым колесом

Схематичная конструкция ведомого (тихоходного) вала показана на рис.3.2.

Рис. 3.2. Конструкция ведомого вала

Диаметры остальных участков валов назначают исходя из конструктивных соображений при компоновке редуктора.

4. КОМПОНОВКА РЕДУКТОРА

4.1. Конструктивные размеры шестерни и колес

Шестерню выполняем за одно целое с валом. Её размеры:

ширина

диаметр

диаметр вершины зубьев

диаметр впадин
.

Колесо кованое:

ширина

диаметр

диаметр вершины зубьев

диаметр впадин

диаметр ступицы

длина ступицы,

принимаем

Толщина обода:

принимаем

Толщина диска:

4.2. Конструктивные размеры корпуса редуктора

Толщина стенок корпуса и крышки:

Принимаем

Принимаем
.

Толщина фланцев поясов корпуса и крышки:

верхнего пояса корпуса и пояса крышки:

нижнего пояса корпуса:

Принимаем
.

Диаметр болтов:

фундаментальных ; принимаем болты с резьбой М16;

крепящих крышку к корпусу у подшипников

; принимаем болты с резьбой М12;

соединяющих крышку с корпусом ; принимаем болты с резьбой М8.

4.3.Компановка редуктора

Первый этап служит для приближенного определения положения зубчатых колес относительно опор для последующего определения опорных реакций и подбора подшипников.

Компоновочный чертеж выполняется в одной проекции - разрез по осям валов при снятой крышке редуктора; масштаб 1:1.

Размеры корпуса редуктора:

принимаем зазор между торцом шестерни и внутренней стенкой корпуса (при наличии ступицы зазор берем от торца ступицы) ; принимаем А 1 =10мм; при наличии ступицы зазор берется от торца ступицы;

принимаем зазор от окружности вершин зубьев колеса до внутренней стенки корпуса
;

принимаем расстояние между наружным кольцом подшипника ведущего вала и внутренней стенкой корпуса ; если диаметр окружности вершин зубьев шестерни окажется больше наружного диаметра подшипника, то расстояние надо брать от шестерни.

Предварительно намечаем радиальные шарикоподшипники однорядные средней серии; габариты подшипников выбираем по диаметру вала в месте посадки подшипников
и
.(Таблица 1).

Таблица 1:

Габариты намеченных подшипников

Условное обозначение подшипника

Грузоподъемность, кН

размеры, мм

Быстроходный

Тихоходный

Решаем вопрос о смазывании подшипников. Принимаем для подшипников пластичный смазочный материал. Для предотвращения вытекания смазки внутрь корпуса и вымывания пластичного смазочного материала жидким маслом из зоны зацепления устанавливаем мазеудерживающие кольца.

Эскизная компоновка изображена на рис. 4.1.

5.ПОДБОР И ПРОВЕРКА ДОЛГОВЕЧНОСТИ ПОДШИПНИКА, ОПОРНЫЕ РЕАКЦИИ

5.1. Ведущий вал

Из предыдущих расчетов имеем:

Определяем опорные реакции.

Расчетная схема вала и эпюры изгибающих моментов изображены на рис. 5.1

В плоскости YOZ:

Проверка:

в плоскости XOZ:

Проверка:

в плоскости YOZ:

сечение 1:
;

сечение 2: M
=0

Сечение 3: М

в плоскости XOZ:

сечение 1:
;

=

сечение2:

сечение3:

Подбираем подшипник по наиболее нагруженной опоре. Намечаем радиальные шариковые подшипники 208: d =40 мм; D =80 мм; В =18 мм; С =32,0 кН; С о = 17,8кН.

где R B =2267,3 Н

- температурный коэффициент.

Отношение
; этой величине соответствует
.

Отношение
; Х=0,56 и Y =2,15

Расчетная долговечность по формуле:

где
- частота вращения ведущего вала.

5.2.Ведомый вал

Ведомый вал несет такие же нагрузки, как и ведущий:

Расчетная схема вала и эпюры изгибающих моментов изображены на рис. 5.2

Определяем опорные реакции.

В плоскости YOZ:

Проверка:

В плоскости ХOZ:

Проверка:

Суммарные реакции в опорах А и В:

Определяем моменты по участкам:

в плоскости YOZ:

сечение 1: при х=0,
;

при x = l 1 , ;

сечение 2: при x = l 1 , ;

при х= l 1 + l 2 ,

сечение 3:;

в плоскости XOZ:

сечение 1: при х=0, ;

при x = l 1 , ;

сечение 2: при х= l 1 + l 2 ,

сечение 3: при x = l 1 + l 2 + l 3 ,

Строим эпюры изгибающих моментов.

Подбираем подшипник по наиболее нагруженной опоре и определяем их долговечность. Намечаем радиальные шариковые подшипники 211: d =55 мм; D =100 мм; В =21 мм; С =43,6 кН; С о = 25,0 кН.

где R A =4290,4 Н

1 (вращается внутреннее кольцо);

Коэффициент безопасности для приводов ленточных конвейеров;

Температурный коэффициент.

Отношение
; этой величине соответствует e=0,20.

Отношение
, тогда Х=1, Y=0. Поэтому

Расчетная долговечность, млн. об.

Расчетная долговечность, ч.

где
- частота вращения ведомого вала.

6.ЗАПАС УСТАЛОСТНОЙ ПРОЧНОСТИ. Уточненный расчет валов

Примем, что нормальные напряжения изгиба меняются по симметричному циклу, а касательные от кручения – по пульсирующему.

Уточненный расчет валов состоит в определении коэффициентов запаса прочности s для опасных сечений вала и сравнении их с требуемыми значениями [s]. Прочность соблюдена при
.

6.1.Ведущий вал

Сечение 1: при х=0, ;

при х= l 3 , ;

Сечение 2: при х= l 3 , ;

при х= l 3 + l 2 , ;

Сечение 3: при х= l 3 + l 2 , ;

при х= l 3 + l 2 + l 1 , .

Крутящий момент:

Определяем опасные сечения. Для этого схематически изображаем вал (рис. 8.1)

Рис. 8.1 Схематическое изображение ведущего вала

Опасными являются два сечения: под левым подшипником и под шестерней. Они опасны, т.к. сложное напряженное состояние (изгиб с кручением), изгибающий момент значительный.

Концентраторы напряжений:

1) подшипник посажен по переходной посадке (напрессовка менее 20 МПа);

2) галтель (или проточка).

Определяем коэффициент запаса усталостной прочности.

При диаметре заготовки до 90мм
среднее значение предела прочности для стали 45 с термообработкой - улучшение
.

Предел выносливости при симметричном цикле изгиба:

Предел выносливости при симметричном цикле касательных напряжений:

Сечение А-А. Концентрация напряжений обусловлена посадкой подшипника с гарантированным натягом:

Т.к. давление напрессовки меньше 20 МПа, то снижаем значение данного отношения на 10 %.

для упомянутых выше сталей принимаем
и

Изгибающий момент из эпюр:

Осевой момент сопротивления:

Амплитуда нормальных напряжений:

Среднее напряжение:

Полярный момент сопротивления:

Амплитуда и среднее напряжение цикла касательных напряжений по формуле:

Коэффициент запаса прочности по нормальным напряжениям по формуле:

Коэффициент запаса прочности по касательным напряжениям по формуле:

Результирующий коэффициент больше допустимых норм (1,5÷5). Следовательно, диаметр вала нужно уменьшить, что в данном случае делать не следует, т.к. такой большой коэффициент запаса прочности объясняется тем, что диаметр вала был увеличен при конструировании для соединения его стандартной муфтой с валом электродвигателя.

6.2.Ведомый вал:

Определяем суммарные изгибающие моменты. Значения изгибающих моментов по участкам берем с эпюр.

Сечение 1: при х=0, ;

при х= l 1 , ;

Сечение 2: при х= l 1 , ;

при х= l 1 + l 2 , ;

Сечение 3: при х= l 1 + l 2 , ; .

Амплитуда и среднее напряжение цикла касательных напряжений:

Коэффициент запаса прочности по нормальным напряжениям:

Коэффициент запаса прочности по касательным напряжениям:

Результирующий коэффициент запаса прочности для сечения по формуле:

Т.к. результирующий коэффициент запаса прочности под подшипником меньше 3,5, то уменьшать диаметр вала не надо.

7. Расчет шпонок

Материал шпонок – сталь 45 нормализованная.

Напряжения смятия и условие прочности определяем по формуле:

.

Максимальные напряжения смятия при стальной ступице [σ см ] = 100120 МПа, при чугунной [σ

Устанавливаем вязкость масла. При контактных напряжениях
=400,91 МПа и скорости
рекомендуемая вязкость масла должна быть примерно равна
Принимаем масло индустриальное И-30А (по ГОСТ20799-75).

9.СБОРКА РЕДУКТОРА

Перед сборкой внутреннюю полость корпуса редуктора тщательно очищают и покрывают маслостойкой краской.

Сборку производят в соответствии со сборочным чертежом редуктора, начиная с узлов валов:

на ведущий вал мазеудерживающие кольца и шарикоподшипники, предварительно нагретые в масле до 80-100 0 С;

в ведомый вал закладывают шпонку
и напрессовывают зубчатое колесо до упора в бурт вала; затем надевают распорную втулку, мазеудерживающие кольца и устанавливают шарикоподшипники, предварительно нагретые в масле.

Собрание валы укладывают в основание корпуса редуктора и надевают крышку корпуса, покрывая предварительно поверхность стыка крышки и корпуса спиртовым лаком. Для центровки устанавливают крышку на корпус с помощью двух конических штифтов; затягивают болты, крепящие крышку к корпусу.

После этого в подшипниковые камеры ведомого вала закладывают пластичную смазку, ставят крышки подшипников с комплектом металлических прокладок для регулировки.

Перед постановкой сквозных крышек в проточки закладывают резиновые армированные манжеты. Проверяют проворачиванием валов отсутствие заклинивания подшипников и закрепляют крышки болтами.

Затем ввертывают пробку маслоспускного отверстия с прокладкой и жезловый указатель.

Заливают в корпус масло и закрывают смотровое отверстие крышкой с прокладкой из технического картона; закрепляют крышку болтами.

Собранный редуктор обкатывают и подвергают испытанию на стенде по программе, устанавливаемой техническими условиями.Расчет расчетов сводим в таблицу 2: Таблица 2 Геометрические параметры тихоходной ступени цилиндрического редуктора Параметры...

  • Проектирование и проверочный расчет редуктора

    Курсовая работа >> Промышленность, производство

    Есть выбор электродвигателя, проектирование и проверочный расчет редуктора и его составных частей. В... Вывод: ΔU = 1% редуктора [ΔU] = 4% ), кинематический расчет выполнен удовлетворительно. 1.4Расчет частот, мощностей...



  • Эта статья также доступна на следующих языках: Тайский

    • Next

      Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

      • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

        • Next

          В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

    • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
      https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png