ВВЕДЕНИЕ

В настоящее время авиационные газотурбинные двигатели, отработавшие свой летный ресурс, находят применение для привода газоперекачивающих агрегатов , электрогенераторов, газоструйных установок, устройств для очистки карьеров, снегоочистителей и т.д. Однако тревожное состояние отечественной энергетики требует применения авиадвигателей и привлечения производственного потенциала авиационной отрасли прежде всего для развития промышленной энергетики.
Массовое применение авиадвигателей, отработавших летный ресурс и сохранивших способность к дальнейшему использованию, позволяет в масштабах содружества независимых государств решить поставленную задачу, поскольку в условиях общего спада производства сохранение овеществленного в двигателях труда и экономия дорогостоящих материалов, используемых при их создании, позволяет не только затормозить дальнейший экономический спад, но и достичь роста экономики.
Опыт создания приводных газотурбинных установок на базе авиационных двигателей, таких, например, как HK-12CT, HK-16CT , а затем НК-36СТ, НК-37 , НК-38СТ, АЛ-31СТ, ГТУ-12П,-16П,-25П, подтвердил сказанное выше.
На базе авиационных двигателей чрезвычайно выгодно создавать и электростанции городского типа. Отчуждаемая под станцию площадь не сопоставимо меньше, чем для строительства ТЭС, при одновременно лучших экологических характеристиках. При этом капиталовложения при строительстве электростанций могут быть снижены на 30...35%, а также в 2...3 раза сокращен объем строительно-монтажных работ энергетических блоков (цехов) и на 20.. .25% сокращены сроки строительства по сравнению с цехами, использующими газотурбинные приводы стационарного типа. Хорошим примером служит Безымянская ТЭЦ (г. Самара) с энергетической мощностью 25 МВт и тепловой 39 Гкал/ч, в состав которой впервые вошел авиационный газотурбинный двигатель НК-37.
Существует еще несколько важных соображений в пользу конвертирования именно авиационных двигателей. Одно из них связано со своеобразием размещения природных ресурсов на территории СНГ. Известно, что основные запасы нефти и газа расположены в восточных районах Западной и Восточной Сибири, тогда как основные потребители энергии сосредоточены в Европейской части страны и на Урале (где размещена большая часть производственных фондов и населения). В этих условиях поддержание экономики в целом определяется возможностью организации транспорта энергоносителей с востока на запад дешевыми, транспортабельными силовыми установками оптимальной мощности с высоким уровнем автоматизации, способными обеспечить эксплуатацию в безлюдном варианте «под замком».
Задача обеспечения магистралей необходимым количеством приводных агрегатов, отвечающих этим требованиям, наиболее рационально решается путем продления жизни (конвертированием) крупных партий снимаемых с крыла авиадвигателей после выработки ими летного ресурса Освоение новых районов, лишенных дорог и аэродромов, требует использования энергетических установок малой массы и транспортируемых существующими средствами (по воде или вертолетами), при этом получение максимальной удельной мощности (кВт/кг) также обеспечивает конвертированный авиадвигатель. Заметим, что этот показатель у авиадвигателей в 5...7 раз больше, чем у стационарных установок. Укажем в этой связи еще одно достоинство авиадвигателя - малое время выхода на номинальную мощность (исчисляемое секундами), что делает его незаменимым при аварийных ситуациях на атомных электростанциях, где авиадвигатели используются в качестве резервных агрегатов. Очевидно, энергетические установки, созданные на базе авиадвигателей, могут использоваться и в качестве пиковых на электростанциях, и в качестве резервных агрегатов для особого периода.
Итак, географические особенности размещения энергоносителей, наличие большого (исчисляемого сотнями) количества снимаемых ежегодно с крыла авиадвигателей и рост потребного количества приводов для различных отраслей народного хозяйства требуют преимущественного наращивания парка приводов на базе авиадвигателей. В настоящее время доля авиапривода в общем балансе мощностей на компрессорных станциях превышает 33%. В главе 1 книги приведены особенности эксплуатации авиационных ГТД в качестве приводов для нагнетателей газоперекачивающих станций и электрогенераторов, изложены требования и основные принципы конвертирования, даны примеры выполненных конструкций приводов и показаны тенденции развития конвертированных авиадвигателей.

В главе 2 рассмотрены проблемы и направления повышения КПД и мощности приводов энергетических установок, создаваемых на базе авиационных двигателей, введением дополнительных элементов в схему привода и различными приемами утилизации тепла Особое внимание в работе обращено на создание энергетически эффективных приводов, ориентированных на получение высоких значений КПД (до 48...52%) и ресурса работы не менее (З0...60)103 часов.

В повестку дня поставлен вопрос об увеличении ресурса работы привода до тр = (100...120)-103 часов и снижении выбросов вредных веществ. В этом случае возникает необходимость проведения дополнительных мероприятий вплоть до переделки узлов с сохранением уровня и идеологии проектирования авиационных двигателей. Приводы с такими изменениями предназначаются только для наземного применения, поскольку их массовые (весовые) характеристики оказываются хуже, чем у исходных авиационных ГТД .

В отдельных случаях, несмотря на увеличение начальных затрат, связанных с изменениями конструкции двигателя, стоимость жизненного цикла таких ГТУ оказывается меньшей. Такого рода усовершенствования в ГТУ тем более оправдываются, так как исчерпание количества двигателей, находящихся на крыле, происходит быстрее, чем исчерпание ресурса установок, эксплуатируемых на газопроводах или в составе электростанций.

В целом книга отражает идеи, которые внедрял Генеральный конструктор авиационно-космической техники, академик АН СССР и РАН

Н.Д. Кузнецов в теорию и практику конвертирования авиадвигателей, начатую в 1957 году.

При подготовке книги, кроме отечественных материалов, были использованы работы зарубежных ученых и конструкторов, опубликованные в научно-технических журналах.

Авторы выражают признательность сотрудникам ОАО «СНТК им. Н.Д. Кузнецова» В.М. Данильченко, О.В. Назарову, О.П. Павловой, Д.И. Кустову, Л.П. Жолобовой, Е.И. Сениной за помощь в подготовке рукописи.

  • Название: Конвертирование авиационных ГТД в ГТУ наземного применения
  • Е.А. Гриценко; B.П. Данильченко;C.В. Лукачев; В.Е. Резник; Ю.И. Цыбизов
  • Издательство: Самарский научный центр РАН
  • Год: 2004
  • Страниц: 271
  • УДК 621.6.05
  • Формат: .pdf
  • Размер: 9.0 Мб
  • Качество: отличное
  • Серия или Выпуск :-----

СКАЧАТЬ БЕСПЛАТНО Конвертирование авиационных
ГТД в ГТУ наземного применения

Внимание! У Вас нет прав для просмотра скрытого текста.

Авиационные двигатели также часто используются для генерации электрической мощности, благодаря их способности запускаться, останавливаться и изменять нагрузку быстрее, чем промышленные машины.

Типы газотурбинных двигателей

Одновальные и многовальные двигатели

Простейший газотурбинный двигатель имеет только одну турбину, которая приводит компрессор и одновременно является источником полезной мощности. Это накладывает ограничение на режимы работы двигателя.

Иногда двигатель выполняется многовальным. В этом случае имеется несколько последовательно стоящих турбин, каждая из которых приводит свой вал. Турбина высокого давления (первая после камеры сгорания) всегда приводит компрессор двигателя, а последующие могут приводить как внешнюю нагрузку (винты вертолёта или корабля , мощные электрогенераторы и т. д.), так и дополнительные компрессоры самого двигателя, расположенные перед основным.

Преимущество многовального двигателя в том, что каждая турбина работает при оптимальном числе оборотов и нагрузке. При нагрузке, приводимой от вала одновального двигателя, была бы очень плоха приемистость двигателя, то есть способность к быстрой раскрутке, так как турбине требуется поставлять мощность и для обеспечения двигателя большим количеством воздуха (мощность ограничивается количеством воздуха), и для разгона нагрузки. При двухвальной схеме легкий ротор высокого давления быстро выходит на режим, обеспечивая двигатель воздухом, а турбину низкого давления большим количеством газов для разгона. Также есть возможность использовать менее мощный стартер для разгона при пуске только ротора высокого давления.

Турбореактивный двигатель

Схема турбореактивного двигателя: 1 - входное устройство; 2 - осевой компрессор; 3 - камера сгорания; 4 - рабочие лопатки турбины; 5 - сопло.

В полёте поток воздуха тормозится во входном устройстве перед компрессором, в результате чего его температура и давление повышается. На земле во входном устройстве воздух ускоряется, его температура и давление снижаются.

Проходя через компрессор, воздух сжимается, его давление повышается в 10-45 раз, возрастает его температура. Компрессоры газотурбинных двигателей делятся на осевые и центробежные. В наши дни в двигателях наиболее распространены многоступенчатые осевые компрессоры. Центробежные компрессоры, как правило, применяются в малогабаритных силовых установках.

Далее сжатый воздух попадает в камеру сгорания, в так называемые жаровые трубы, либо в кольцевую камеру сгорания, которая не состоит из отдельных труб, а является цельным кольцевым элементом. В наши дни кольцевые камеры сгорания являются наиболее распространёнными. Трубчатые камеры сгорания используются гораздо реже, в основном на военных самолётах. Воздух на входе в камеру сгорания разделяется на первичный, вторичный и третичный. Первичный воздух поступает в камеру сгорания через специальное окно в передней части, по центру которого расположен фланец крепления форсунки и участвует непосредственно в окислении (сгорании) топлива (формировании топливо-воздушной смеси). Вторичный воздух поступает в камеру сгорания сквозь отверстия в стенках жаровой трубы, охлаждая, придавая форму факелу и не участвуя в горении. Третичный воздух подаётся в камеру сгорания уже на выходе из неё, для выравнивания поля температур. При работе двигателя в передней части жаровой трубы всегда вращается вихрь раскалённого газа (что обусловлено специальной формой передней части жаровой трубы), постоянно поджигающего формируемую топливовоздушную смесь, происходит сгорание топлива (керосина , газа), поступающего через форсунки в парообразном состоянии.

Газовоздушная смесь расширяется и часть её энергии преобразуется в турбине через рабочие лопатки в механическую энергию вращения основного вала. Эта энергия расходуется, в первую очередь, на работу компрессора, а также используется для привода агрегатов двигателя (топливных подкачивающих насосов, масляных насосов и т. п.) и привода электрогенераторов, обеспечивающих энергией различные бортовые системы.

Основная часть энергии расширяющейся газовоздушной смеси идёт на ускорение газового потока в сопле и создание реактивной тяги.

Чем выше температура сгорания, тем выше КПД двигателя. Для предупреждения разрушения деталей двигателя используют жаропрочные сплавы , оснащённые системами охлаждения, и термобарьерные покрытия .

Турбореактивный двигатель с форсажной камерой

Турбореактивный двигатель с форсажной камерой (ТРДФ) - модификация ТРД, применяемая в основном на сверхзвуковых самолётах . Между турбиной и соплом устанавливается дополнительная форсажная камера , в которой сжигается дополнительное горючее. В результате происходит увеличение тяги (форсаж) до 50%, но расход топлива резко возрастает. Двигатели с форсажной камерой, как правило, не используются в коммерческой авиации по причине их низкой экономичности.

« Основные параметры турбореактивных двигателей различных поколений »

Поколение/
период
Т-ра газа
перед турбиной
°C
Степень сжатия
газа, π к *
Характерные
представители
Где установлены
1 поколение
1943-1949 гг.
730-780 3-6 BMW 003, Jumo 004 Me 262 , Ar 234 , He 162
2 поколение
1950-1960 гг.
880-980 7-13 J 79, Р11-300 F-104 , F4, МиГ-21
3 поколение
1960-1970 гг.
1030-1180 16-20 TF 30, J 58, АЛ 21Ф F-111 , SR 71,
МиГ-23 Б, Су-24
4 поколение
1970-1980 гг.
1200-1400 21-25 F 100, F 110, F404 ,
РД-33 , АЛ-31Ф
F-15, F-16,
МиГ-29 , Су-27
5 поколение
2000-2020 гг.
1500-1650 25-30 F119-PW-100, EJ200,
F414, АЛ-41Ф
F-22, F-35,
ПАК ФА

Начиная с 4-го поколения рабочие лопатки турбины выполняются из монокристаллических сплавов, охлаждаемые.

Турбовинтовой двигатель

Схема турбовинтового двигателя: 1 - воздушный винт; 2 - редуктор; 3 - турбокомпрессор.

В турбовинтовом двигателе (ТВД) основное тяговое усилие обеспечивает воздушный винт , соединённый через редуктор с валом турбокомпрессора. Для этого используется турбина с увеличенным числом ступеней, так что расширение газа в турбине происходит почти полностью и только 10-15 % тяги обеспечивается за счёт газовой струи.

Турбовинтовые двигатели гораздо более экономичны на малых скоростях полёта и широко используются для самолётов , имеющих большую грузоподъёмность и дальность полёта. Крейсерская скорость самолётов, оснащённых ТВД, 600-800 км/ч.

Турбовальный двигатель

Турбовальный двигатель (ТВаД) - газотурбинный двигатель, у которого вся развиваемая мощность через выходной вал передается потребителю. Основная область применения - силовые установки вертолетов.

Двухконтурные двигатели

Дальнейшее повышение эффективности двигателей связано с появлением так называемого внешнего контура. Часть избыточной мощности турбины передаётся компрессору низкого давления на входе двигателя.

Двухконтурный турбореактивный двигатель

Схема турбореактивного двухконтурного двигателя (ТРДД) со смешением потоков: 1 - компрессор низкого давления; 2 - внутренний контур; 3 - выходной поток внутреннего контура; 4 - выходной поток внешнего контура.

В турбореактивном двухконтурном двигателе (ТРДД) воздушный поток попадает в компрессор низкого давления, после чего часть потока проходит по обычной схеме через турбокомпрессор, а остальная часть (холодная) проходит через внешний контур и выбрасывается без сгорания, создавая дополнительную тягу. В результате снижается температура выходного газа, снижается расход топлива и уменьшается шум двигателя. Отношение количества воздуха, прошедшего через внешний контур, к количеству прошедшего через внутренний контур воздуха называется степенью двухконтурности (m). При степени двухконтурности <4 потоки контуров на выходе, как правило, смешиваются и выбрасываются через общее сопло, если m>4 - потоки выбрасываются раздельно, так как из-за значительной разности давлений и скоростей смешение затруднительно.

Двигатели с малой степенью двухконтурности (m<2) применяются для сверхзвуковых самолётов, двигатели с m>2 для дозвуковых пассажирских и транспортных самолётов.

Турбовентиляторный двигатель

Схема турбореактивного двухконтурного двигателя без смешения потоков (Турбовентиляторного двигателя): 1 - вентилятор; 2 - защитный обтекатель; 3 - турбокомпрессор; 4 - выходной поток внутреннего контура; 5 - выходной поток внешнего контура.

Турбовентиляторный реактивный двигатель (ТВРД) - это ТРДД со степенью двухконтурности m=2-10. Здесь компрессор низкого давления преобразуется в вентилятор, отличающийся от компрессора меньшим числом ступеней и большим диаметром, и горячая струя практически не смешивается с холодной.

Турбовинтовентиляторный двигатель

Дальнейшим развитием ТВРД с увеличением степени двухконтурности m=20-90 является турбовинтовентиляторный двигатель (ТВВД). В отличие от турбовинтового двигателя , лопасти двигателя ТВВД имеют саблевидную форму, что позволяет перенаправить часть воздушного потока в компрессор и повысить давление на входе компрессора. Такой двигатель получил название винтовентилятор и может быть как открытым, так и закапотированным кольцевым обтекателем. Второе отличие - винтовентилятор приводится от турбины не напрямую, как вентилятор, а через редуктор.

Вспомогательная силовая установка

Вспомогательная силовая установка (ВСУ) - небольшой газотурбинный двигатель, являющийся дополнительным источником мощности, например, для запуска маршевых двигателей самолетов. ВСУ обеспечивает бортовые системы сжатым воздухом (в том числе для вентиляции салона), электроэнергией и создает давление в гидросистеме летательного аппарата.

Судовые установки

Используются в судовой промышленности для снижения веса. GE LM2500 и LM6000 - две характерных модели этого типа машин.

Наземные двигательные установки

Другие модификации газотурбинных двигателей используются в качестве силовых установок на судах (газотурбоходы), железнодорожном (газотурбовозы) и другом наземном транспорте, а также на электростанциях , в том числе, передвижных, и для перекачки природного газа . Принцип работы практически не отличается от турбовинтовых двигателей .

Газовая турбина с замкнутым циклом

В газовой турбине с замкнутым циклом рабочий газ циркулирует без контакта с окружающей средой. Нагрев (перед турбиной) и охлаждение (перед компрессором) газа производится в теплообменниках . Такая система позволяет использовать любой источник тепла (например, газоохлаждаемый ядерный реактор). Если в качестве источника тепла используется сгорание топлива, то такое устройство называют турбиной внешнего сгорания. На практике газовые турбины с замкнутым циклом используются редко.

Газовая турбина с внешним сгоранием

Большинство газовых турбин представляют собой двигатели внутреннего сгорания, но также возможно построить газовую турбину внешнего сгорания, которая, фактически, является турбинной версией теплового двигателя .

При внешнем сгорании в качестве топлива используется пылевидный уголь или мелкоистолченная биомасса (например, опилки). Внешнее сжигание газа используется как непосредственно, так и косвенно. В прямой системе, продукты сгорания проходят сквозь турбину. В косвенной системе, используется теплообменник и чистый воздух проходит сквозь турбину. Тепловой КПД ниже в системе внешнего сгорания косвенного типа, однако лопасти не подвергаются воздействию продуктов сгорания.

Использование в наземных транспортных средствах

A 1968 Howmet TX - единственная в истории турбина, принесшая победу в автомобильной гонке.

Газовые турбины используются в кораблях, локомотивах и танках. Множество экспериментов проводилось с автомобилями, оснащенными газовыми турбинами.

В 1950 году дизайнер Ф.Р. Белл и главный инженер Морис Вилкс в британской компании Rover Company анонсировал первый автомобиль с приводом от газотурбинного двигателя. Двухместный JET1 имел двигатель, расположенный позади сидений, решетки воздухозаборника по обеим сторонам машины, и выхлопные отверстия на верхней части хвоста. В ходе испытаний автомобиль достиг максимальной скорости 140 км/ч, на скорости турбины 50000 об/мин. Автомобиль работал на бензине , парафиновом или дизельном маслах, но проблемы с потреблением топлива оказались непреодолимыми для производства автомобилей. В настоящее время он выставлен в Лондоне в Музее Науки .

Команды Rover и British Racing Motors (BRM) (Формула-1) объединили усилия для создания Rover-BRM, авто, с приводом от газовых турбин, которое приняло участие в гонке 24 часа Ле-Мана 1963 года, управляемое Грэмом Хиллом и Гитнером Ричи. Оно имело среднюю скорость - 107,8 миль/ч (173 км/ч), а максимальную скорость - 142 миль/ч (229 км/ч). Американские компании Ray Heppenstall, Howmet Corporation и McKee Engineering объединились для совместной разработки собственных газотурбинных спортивных автомобилей в 1968 году, Howmet TX приняла участие в нескольких американских и европейских гонках, в том числе завоевав две победы, а также принимала участие в гонке 24 часа Ле-Мана 1968 года. Автомобили использовали газовые турбины Continental Motors Company, благодаря которым, в конечном итоге, ФИА было установлено шесть посадочных скоростей для машин с приводом от турбин.

На гонках автомобилей с открытыми колёсами, революционное полноприводное авто 1967 года STP Oil Treatment Special с приводом от турбины, специально подобранной легендой гонок Эндрю Гранателли и управляемое Парнелли Джонсом, почти выиграло в гонке "Инди-500" ; авто с турбиной STP компании Pratt & Whitney обгоняло почти на круг авто, шедшее вторым, когда у него неожиданно отказала коробка передач за три круга до финишной черты. В 1971 глава компании Lotus Колин Чепмен представил авто Lotus 56B F1, с приводом от газовой турбины Pratt & Whitney . У Чепмена была репутация создателя машин-победителей, но он вынужден был отказаться от этого проекта из-за многочисленных проблем с инерционностью турбин (турболагом).

Оригинальная серия концептуальных авто General Motors Firebird была разработана для автовыставки Моторама 1953, 1956, 1959 годов, с приводом от газовых турбин.

Использование в танках

Первые исследования в области применения газовой турбины в танках проводились в Германии Управлением вооруженных сухопутных сил начиная с середины 1944 года. Первым массовым танком, на котором устанавливали газотурбинный двигатель стал С-танк . Газовые двигатели установлены в российском Т-80 и американском М1 Абрамс .
Газотурбинные двигатели, устанавливаемые в танках, имеют при схожих с дизельными размерами гораздо большую мощность, меньший вес и меньшую шумность. Однако из-за низкого КПД подобных двигателей требуется гораздо большее количество топлива для сравнимого с дизельным двигателем запаса хода.

Конструкторы газотурбинных двигателей

См. также

Ссылки

  • Газотурбинный двигатель - статья из Большой советской энциклопедии
  • ГОСТ Р 51852-2001

К.т.н. А.В. Овсянник, зав. кафедрой «Промышленная теплоэнергетика и экология»;
к.т.н. А.В. Шаповалов, доцент;
В.В. Болотин, инженер;
«Гомельский государственный технический университет имени П.О. Сухого», Республика Беларусь

В статье приводится обоснование возможности создания ТЭЦ на базе конвертированного АГТД в составе газотурбинной установки (ГТУ), оценка экономического эффекта от внедрения АГТД в энергетику в составе крупных и средних ТЭЦ для погашения пиковых электрических нагрузок.

Обзор авиационных газотурбинных установок

Одним из удачных примеров применения АГТД в энергетике является теплофикационная ГТУ 25/39, установленная и находящаяся в промышленной эксплуатации на Безымянской ТЭЦ , расположенной в Самарской области в России, описание которой приведено ниже. Газотурбинная установка предназначена для выработки электрической и тепловой энергии для нужд промышленных предприятий и бытовых потребителей. Электрическая мощность установки - 25 МВт, тепловая - 39 МВт. Суммарная мощность установки - 64 МВт. Годовая производительность электроэнергии - 161,574 ГВт.ч/год, тепловой энергии - 244120 Гкал/год .

Установка отличается применением уникального авиационного двигателя НК-37, обеспечивающего КПД в 36,4%. Такой КПД обеспечивает высокую эффективность установки, недостижимую на обычных тепловых электростанциях, а также ряд других преимуществ. Установка работает на природном газе с давлением 4,6 МПа и расходом 1,45 кг/с. Кроме электроэнергии установка производит 40 т/ч пара давлением 14 кгс/см 2 и нагревает 100 т сетевой воды от 70 до 120 О С, что позволяет обеспечить светом и теплом небольшой город .

При размещении установки на территории тепловых станций не требуется дополнительных специальных блоков химводоочистки, сброса воды и т.д.

Подобные газотурбинные энергетические установки незаменимы для применения в тех случаях, когда:

■ необходимо комплексное решение проблемы обеспечения электрической и тепловой энергией небольшого города, промышленного или жилого района - модульность установок позволяет легко скомпоновать любой вариант в зависимости от нужд потребителя;

■ осуществляется индустриальное освоение новых районов жизни людей, в том числе с условиями жизни, когда особо важна компактность и технологичность установки. Нормальная работоспособность установки обеспечивается в диапазоне температур окружающей среды от -50 до +45 О С при действии всех других неблагоприятных факторов: влажности до 100 %, осадках в виде дождя, снега и т.д.;

■ важна экономичность установки: высокий КПД обеспечивает возможность производства более дешевой электрической и тепловой энергии и короткий срок окупаемости (около 3,5 лет) при капиталовложениях в строительство установки 10 млн 650 тыс. дол. США (по данным производителя).

Кроме того, установка отличается экологической чистотой, наличием многоступенчатого шумоподавления, полной автоматизацией процессов управления.

ГТУ 25/39 представляет собой стационарную установку блочно-контейнерного типа размером 21 м на 27 м. Для ее функционирования в варианте автономном от существующих станций в комплекте с установкой должны находиться устройства химводоподготовки, открытое распределительное устройство для понижения выходного напряжения до 220 или 380 В, градирня для охлаждения воды и отдельно стоящий дожимной газовый компрессор. При отсутствии необходимости в воде и паре конструкция установки сильно упрощается и удешевляется.

Сама установка включает в себя авиационный двигатель НК-37, котел-утилизатор типа ТКУ-6 и турбогенератор.

Полное время монтажа установки - 14 месяцев.

В России выпускается большое количество установок на базе конвертированных АГТД мощностью от 1000 кВт до нескольких десятков МВт, они пользуются спросом. Это подтверждает экономическую эффективность их использования и необходимость дальнейших разработок в этой области промышленности.

Установки, выпускаемые на заводах СНГ отличаются:

■ низкими удельными капиталовложениями;

■ блочным исполнением;

■ сокращенным сроком монтажа;

■ малым сроком окупаемости;

■ возможностью полной автоматизации и др. .

Характеристика ГТУ на базе конвертированного двигателя АИ-20

Весьма популярной и наиболее часто применяемой является ГТУ на базе двигателя АИ-20. Рассмотрим газотурбинную ТЭЦ (ГТТЭЦ), относительно которой были проведены исследования и выполнены расчеты основных показателей.

Газотурбинная теплоэлектроцентраль ГТТЭЦ- 7500/6,3 с установленной электрической мощностью 7500 кВт состоит из трех газотурбогенераторов с турбовинтовыми двигателями АИ-20 номинальной электрической мощностью 2500 кВт каждый.

Тепловая мощность ГТТЭЦ 15,7 МВт (13,53 Гкал/ч). За каждым газотурбогенератором установлен газовый подогреватель сетевой воды (ГПСВ) с оребренными трубами для подогрева воды отработавшими газами на нужды отопления, вентиляции и горячего водоснабжения населенного пункта. Через каждый экономайзер проходят отработавшие в авиационном двигателе газы в количестве 18,16 кг/с с температурой 388,7 О С на входе в экономайзер. В ГПСВ газы охлаждаются до температуры 116,6 О С и подаются в дымовую трубу.

Для режимов с пониженными тепловыми нагрузками введено байпасирование потока выхлопных газов с выводом в дымовую трубу. Расход воды через один экономайзер составляет 75 т/ч. Сетевая вода нагревается от температуры 60 до 120 О С и подается потребителям для нужд отопления, вентиляции и горячего водоснабжения под давлением 2,5 МПа .

Технические показатели ГТУ на базе двигателя АИ-20: мощность - 2,5 МВт; степень повышения давления - 7,2; температура газов в турбине на входе - 750 О С, на выходе - 388,69 О С; расход газов - 18,21 кг/с; количество валов - 1; температура воздуха перед компрессором - 15 О С. На основании имеющихся данных производим расчеты выходных характеристик ГТУ согласно алгоритму, приведенному в источнике .

Выходные характеристики ГТУ на базе двигателя АИ-20:

■ удельная полезная работа ГТУ (при η мех =0,98): H e =139,27 кДж/кг;

■ коэффициент полезной работы: φ=3536;

■ расход воздуха при мощности N гту =2,5 МВт: G k =17,95 кг/с;

■ расход топлива при мощности N гту =2,5 МВт: G топ =0,21 кг/с;

■ суммарный расход выхлопных газов: g г =18,16 кг/с;

■ удельный расход воздуха в турбине: g k =0,00718 кг/кВт;

■ удельный расход теплоты в камере сгорания: q 1 =551,07 кДж/кг;

■ эффективный КПД ГТУ: η е =0,2527;

■ удельный расход условного топлива на выработанную электроэнергию (при КПД генератора η ген =0,95) без утилизации тепла выхлопных газов: b у. т =511,81 г/кВтч.

На основании полученных данных и в соответствии с алгоритмом расчета , можно перейти к получению технико-экономических показателей. Дополнительно задаемся следующим: установленная электрическая мощность ГТТЭЦ - N уст =7500 кВт, номинальная тепловая мощность установленных на ГТТЭЦ ГПСВ - Qтэц=15736,23 кВт, расход электроэнергии на собственные нужды принят равным 5,5%. В результате проведенных исследований и расчетов были определены следующие величины:

■ коэффициент первичной энергии ГТТЭЦ брутто, равный отношению суммы электрической и тепловой мощностей ГТТЭЦ к произведению удельного расхода топлива с низшей теплотой сгорания топлива, η б гттэц =0,763;

■ коэффициент первичной энергии ГТТЭЦ нетто η н гттэц = 0,732 ;

■ КПД выработки электрической энергии в теплофикационной ГТУ, равный отношению удельной работы газа в ГТУ к разнице удельного расхода теплоты в камере сгорания ГТУ на 1 кг рабочего тела и удельного отвода тепла в ГПСВ от 1 кг уходящих газов ГТУ, η э гту =0,5311.

На основании имеющихся данных, можно определить технико-экономические показатели ГТТЭЦ :

■ расход условного топлива на выработку электроэнергии в теплофикационной ГТУ: ВГт У =231,6 г у.т./кВт.ч;

■ часовой расход условного топлива на выработку электроэнергии: B э гту =579 кг у.т./ч;

■ часовой расход условного топлива в ГТУ: B ч эу гту ==1246 кг у. т./ч.

На выработку теплоты в соответствии с «физическим методом» относится оставшееся количество условного топлива: B т ч =667 кг у. т./ч.

Удельный расход условного топлива на выработку 1 Гкал теплоты в теплофикационной ГТУ составит: В т гту =147,89 кг у.т./ч.

Технико-экономические показатели мини- ТЭЦ приведены в табл. 1 (в таблице и далее цены приведены в белорусских рублях, 1000 бел. руб. ~ 3,5 росс. руб. - Прим. авт.).

Таблица 1. Технико-экономические показатели мини-ТЭЦ на базе конвертированного АГТД АИ-20, реализуемого за счет собственных средств (цены указаны в белорусских рублях).

Наименование показателей Единицы

измерения

Величина
Установленная электрическая мощность МВт 3-2,5
Установленная тепловая мощность МВт 15,7
Удельные капитальные вложения за единицу электрической мощности млн руб./кВт-ч 4
Годовой отпуск электроэнергии кВтч 42,525-10 6
Годовой отпуск тепловой энергии Гкал 47357
Себестоимость единицы:
- электроэнергии руб./кВтч 371,9
- тепловой энергии руб./Г кал 138700
Балансовая (валовая)прибыль млн руб. 19348
Срок окупаемости капиталовложений лет 6,3
Точка безубыточности % 34,94
Рентабельность (общая) % 27,64
Внутренняя ставка доходности % 50,54

Экономические расчеты показывают, что срок окупаемости капиталовложений в установки комбинированного производства электроэнергии и теплоты с АГТД составляет до 7 лет при реализации проектов за собственные средства. При этом срок строительства может составлять от нескольких недель при монтаже небольших установок электрической мощностью до 5 МВт, до 1,5 лет при вводе установки электрической мощностью 25 МВт и тепловой 39 МВт. Сокращенные сроки монтажа объясняются модульной поставкой электростанций на базе АГТД с полной заводской готовностью.

Таким образом, основные преимущества конвертированных АГТД, при внедрении в энергетику, сводятся к следующим: низкие удельные капиталовложения в подобные установки, небольшой срок окупаемости, сокращенные сроки строительства, благодаря модульности исполнения (установка состоит из монтажных блоков), возможность полной автоматизации станции и др.

Для сравнения приведем примеры действующих газодвигательных мини-ТЭЦ в Республике Беларусь, их основные технико-экономические параметры указаны в табл. 2 .

Произведя сравнение, нетрудно заметить, что на фоне уже действующих установок газотурбинные установки на базе конвертированных авиационных двигателей имеют ряд преимуществ. Рассматривая АГТУ в качестве высокоманевренных энергетических установок, необходимо иметь и виду возможность их значительной перегрузки путем перевода на парогазовую смесь (за счет впрыска воды в камеры сгорания), при этом можно достигнуть почти трехкратного увеличения мощности газотурбинной установки при относительно небольшом снижении ее коэффициента полезного действия .

Эффективность этих станций значительно возрастает при их размещении на нефтяных скважинах, с использованием попутного газа, на нефтеперерабатывающих заводах, на сельскохозяйственных предприятиях, где они максимально приближены к потребителям тепловой энергии, что снижает потери энергии при ее транспортировке.

Для покрытия остропиковых нагрузок перспективным является применение простейших стационарных авиационных ГТУ. У обычной газовой турбины время до принятия нагрузки после старта составляет 15-17 мин.

Газотурбинные станции с авиационными двигателями очень маневренны, требуют малого (415 мин) времени на пуск из холодного состояния до полной нагрузки, могут быть полностью автоматизированы и управляться дистанционно, что обеспечивает их эффективное использование в качестве аварийного резерва. Длительность пуска до взятия полной нагрузки действующих газотурбинных установок составляет 30-90 мин.

Показатели маневренности ГТУ на базе конвертированного ГТД АИ-20 представлены в табл. 3.

Таблица 3. Показатели маневренности ГТУ на базе конвертированного ГТД АИ-20.

Заключение

На основании проведенной работы и полученных результатов исследования газотурбинных установок на базе конвертированных АГТД, можно сделать следующие выводы:

1. Эффективным направлением развития теплоэнергетики Беларуси является децентрализация энергоснабжения с применением конвертированных АГТД, и наиболее эффективной оказывается комбинированная выработка теплоты и электроэнергии.

2. Установка АГТД может работать как автономно, так и в составе крупных промышленных предприятий и крупных ТЭЦ, как резерв для принятия пиковых нагрузок, имеет небольшой срок окупаемости и сокращенные сроки монтажа. Нет сомнений, что данная технология имеет перспективу развития в нашей стране.

Литература

1. Хусаинов Р.Р. Работа ТЭЦ в условиях оптового рынка электрической энергии // Энергетик. - 2008. - № 6. - С. 5-9.

2. Назаров В.И. К вопросу расчета обобщенных показателей на ТЭЦ // Энергетика. - 2007. - № 6. - С. 65-68.

3. Уваров В.В. Газовые турбины и газотурбинные установки - М.: Высш. шк., 1970. - 320 с.

4. Самсонов В.С. Экономика предприятий энергетического комплекса - М.: Высш. шк., 2003. - 416 с.

«Турбонаддув», «турбореактивные», «турбовинтовые», - эти термины прочно вошли в лексикон инженеров XX века, занимающихся проектированием и обслуживанием транспортных средств и стационарных электрических установок. Их применяют даже в смежных областях и рекламе, когда хотят придать названию продукта какой-то намек на особую мощность и эффективность. В авиации, ракетах, кораблях и на электростанциях чаще всего применяется газовая турбина. Как она устроена? Работает ли на природном газе (как можно подумать из названия), и какими вообще они бывают? Чем турбина отличается от других типов двигателя внутреннего сгорания? В чем ее преимущества и недостатки? Попытка как можно полнее ответить на эти вопросы предпринята в этой статье.

Российский машиностроительный лидер ОДК

России, в отличие от многих других независимых государств, образовавшихся после распада СССР, удалось в значительной мере сохранить машиностроительную промышленность. В частности, производством силовых установок особого назначения занимается фирма «Сатурн». Газовые турбины этой компании находят применение в судостроении, сырьевой отрасли и энергетики. Продукция высокотехнологична, она требует особого подхода при монтаже, отладке и эксплуатации, а также специальных знаний и дорогостоящей оснастки при плановом обслуживании. Все эти услуги доступны заказчикам фирмы «ОДК - Газовые турбины», так сегодня она называется. Таких предприятий в мире не так уж много, хотя принцип устройства главной продукции на первый взгляд несложен. Имеет огромное значение накопленный опыт, позволяющий учитывать многие технологические тонкости, без чего добиться долговечной и надежной работы агрегата невозможно. Вот лишь часть ассортимента продукции ОДК: газовые турбины, электростанции, агрегаты для перекачки газа. Среди заказчиков - "Росатом", "Газпром" и другие «киты» химической промышленности и энергетики.

Изготовление таких сложных машин требует в каждом случае индивидуального подхода. Расчет газовой турбины в настоящее время полностью автоматизирован, но имеют значение материалы и особенности монтажных схем в каждом отдельном случае.

А начиналось все так просто…

Поиски и пар

Первые опыты преобразования поступательной энергии потока во вращательную силу человечество провело еще в глубокой древности, применив обычное водяное колесо. Все предельно просто, сверху вниз течет жидкость, в ее поток помещаются лопатки. Колесо, снабженное ими по периметру, крутится. Так же работает и ветряная мельница. Затем настал век пара, и вращение колеса убыстрилось. Кстати, так называемый «эолипил», изобретённый древним греком Героном примерно за 130 лет до Рождества Христова, представлял собой паровой двигатель, работающий именно по такому принципу. В сущности, это была первая известная исторической науке газовая турбина (ведь пар - это газообразное агрегатное состояние воды). Сегодня все же принято разделять эти два понятия. К изобретению Герона тогда в Александрии отнеслись без особого восторга, хотя и с любопытством. Промышленное оборудование турбинного типа появилось только в конце XIX века, после создания шведом Густафом Лавалем первого в мире активного силового агрегата, оснащенного соплом. Примерно в том же направлении работал инженер Парсонс, снабдив свою машину несколькими функционально связанными ступенями.

Рождение газовых турбин

Столетием ранее некоему Джону Барберу пришла в голову гениальная мысль. Зачем нужно сначала нагревать пар, не проще ли использовать непосредственно выхлопной газ, образующийся при сгорании горючего, и тем самым устранить ненужное посредничество в процессе преобразования энергии? Так получилась первая настоящая газовая турбина. Патент 1791 года излагает основную идею использования в безлошадной повозке, но его элементы сегодня применяются в современных ракетных, авиационных танковых и автомобильных моторах. Начало процессу реактивного двигателестроения дал в 1930 году Фрэнк Уиттл. Ему пришла идея использовать турбину для приведения в движение самолета. В дальнейшем она нашла развитие в многочисленных турбовинтовых и турбореактивных проектах.

Газовая турбина Николы Тесла

Знаменитый ученый-изобретатель всегда подходил к изучаемым вопросам нестандартно. Для всех казался очевидным тот факт, что колеса с лопатками или лопастями «улавливают» движение среды лучше, чем плоские предметы. Тесла, в свойственной ему манере, доказал, что если собрать роторную систему из дисков, расположениях на оси последовательно, то за счет подхватывания пограничных слоев потоком газа, она будет вращаться не хуже, а в некоторых случаях даже лучше, чем многолопастный пропеллер. Правда, направленность подвижной среды должна быть тангенциальной, что в современных агрегатах не всегда возможно или желательно, но зато существенно упрощается конструкция, - в ней совершенно не нужны лопатки. Газовой турбины по схеме Тесла пока не строят, но возможно, идея лишь ждет своего времени.

Принципиальная схема

Теперь о принципиальном устройстве машины. Она представляет собой совокупность вращающейся системы, насаженной на ось (ротора) и неподвижной части (статора). На валу размещен диск с рабочими лопатками, образующими концентрическую решетку, на них воздействует газ, подаваемый под давлением через специальные сопла. Затем расширившийся газ поступает на крыльчатку, также оборудованную лопатками, называемыми рабочими. Для впуска воздушно-топливной смеси и выпуска (выхлопа) служат особые патрубки. Также в общей схеме участвует компрессор. Он может быть выполнен по различному принципу, в зависимости от требуемого рабочего давления. Для его работы от оси отбирается часть энергии, идущая на сжатие воздуха. Газовая турбина работает за счет процесса сгорания воздушно-топливной смеси, сопровождающегося значительным увеличением объема. Вал вращается, его энергию можно использовать полезно. Такая схема называется одноконтурной, если же она повторяется, то ее считают многоступенчатой.

Достоинства авиационных турбин

Примерно с середины пятидесятых годов появилось новое поколение самолетов, в том числе и пассажирских (в СССР это Ил-18, Ан-24, Ан-10, Ту-104, Ту-114, Ту-124 и т. д.), в конструкции которых авиационные поршневые двигатели окончательно и бесповоротно были вытеснены турбинными. Это свидетельствует о большей эффективности такого типа силовой установки. Характеристики газовой турбины превосходят параметры карбюраторных моторов по многим пунктам, в частности, по отношению мощность/вес, которое для авиации имеет первостепенное значение, а также по не менее важным показателям надежности. Ниже расход топлива, меньше подвижных деталей, лучше экологические параметры, снижен шум и вибрации. Турбины менее критичны к качеству горючего (чего нельзя сказать о топливных системах), их легче обслуживать, они требуют не так много смазочного масла. В общем, на первый взгляд кажется, что состоят они не из металла, а из сплошных достоинств. Увы, это не так.

Есть у газотурбинных двигателей и недостатки

Газовая турбина во время работы нагревается, и передает тепло окружающим ее элементам конструкции. Особенно это критично опять же в авиации, при использовании реданной схемы компоновки, предполагающей омывание реактивной струей нижней части хвостового оперения. Да и сам корпус двигателя требует особой теплоизоляции и применения особых тугоплавких материалов, выдерживающих высокие температуры.

Охлаждение газовых турбин - сложная техническая задача. Шутка ли, они работают в режиме фактически перманентного взрыва, происходящего в корпусе. КПД в некоторых режимах ниже, чем у карбюраторных моторов, впрочем, при использовании двухконтурной схемы этот недостаток устраняется, хотя усложняется конструкция, как и в случае включения в схему компрессоров «дожима». Разгон турбин и выход на рабочий режим требует некоторого времени. Чем чаще происходит запуск и остановка агрегата, тем быстрей он изнашивается.

Правильное применение

Что же, без недостатков ни одна система не обходится. Важно найти такое применение каждой из них, при котором ярче проявятся ее достоинства. Например, танки, такие как американский «Абрамс», в основе силовой установки которого - газовая турбина. Его можно заправлять всем, что горит, от высокооктанового бензина до виски, и он выдает большую мощность. Пример, возможно, не очень удачный, так как опыт применения в Ираке и Афганистане показал уязвимость лопаток компрессора к воздействию песка. Ремонт газовых турбин приходится производить в США, на заводе-изготовителе. Отвести танк туда, потом обратно, да и стоимость самого обслуживания плюс комплектующие…

Вертолеты, российские, американские и других стран, а также мощные быстроходные катера в меньшей степени страдают от засорений. В жидкостных ракетах без них не обойтись.

Современные боевые корабли и гражданские суда также имеют газотурбинные двигатели. А еще энергетика.

Тригенераторные электростанции

Проблемы, с которыми сталкивались авиастроители, не так волнуют тех, кто производит промышленное оборудование для производства электроэнергии. Вес в этом случае уже не так важен, и можно сосредоточиться на таких параметрах, как КПД и общая эффективность. Генераторные газотурбинные агрегаты имеют массивный каркас, надежную станину и более толстые лопасти. Выделяемое тепло вполне возможно утилизировать, используя для самых различных нужд, - от вторичного рециклинга в самой системе, до отопления бытовых помещений и термального питания холодильных установок абсорбционного типа. Такой подход называется тригенераторным, и КПД в этом режиме приближается к 90 %.

Ядерные энергоустановки

Для газовой турбины не имеет принципиальной разницы, каков источник разогретой среды, отдающей свою энергию ее лопаткам. Это может быть и сгоревшая воздушно-топливная смесь, и просто перегретый пар (не обязательно водяной), главное, чтобы он обеспечивал ее бесперебойное питание. По своей сути энергетические установки всех атомных электростанций, подводных лодок, авианосцев, ледоколов и некоторых военных надводных кораблей (ракетный крейсер «Петр Великий», например) имеют в своей основе газовую турбину (ГТУ), вращаемую паром. Вопросы безопасности и экологии диктуют закрытый цикл первого контура. Это означает, что первичный тепловой агент (в первых образцах эту роль выполнял свинец, сейчас его заменили парафином), не покидает приреакторной зоны, обтекая тепловыделяющие элементы по кругу. Нагрев рабочего вещества осуществляется в последующих контурах, и испаренный углекислый газ, гелий или азот вращает колесо турбины.

Широкое применение

Сложные и большие установки практически всегда уникальны, их производство ведется малыми сериями или вообще изготовляются единичные экземпляры. Чаще всего агрегаты, выпускаемые в больших количествах, находят применение в мирных отраслях хозяйства, например, для перекачки углеводородного сырья по трубопроводам. Именно такие и производятся компанией ОДК под маркой «Сатурн». Газовые турбины насосных станций полностью соответствуют по назначению своему названию. Они действительно качают природный газ, используя для своей работы его же энергию.

ИДЕЯ применить в автомобилях газотурбинные двигатели возникла давно. Но лишь за последние несколько лет их конструкция достигла той степени совершенства, которая дает им право на существование.
Высокий уровень развития теории лопаточных двигателей, металлургии и техники производства обеспечивает теперь реальную возможность создания надежных газотурбинных двигателей, способных с успехом заменить на автомобиле поршневые двигатели внутреннего сгорания.
Что представляет собой газотурбинный двигатель?
На рис. показана принципиальная схема такого двигателя. Ротационный компрессор, находящийся на одном валу с газовой турбиной, засасывает воздух из атмосферы, сжимает его и нагнетает в камеру сгорания. Топливный насос, также приводимый в движение от вала турбины, нагнетает топливо в форсунку, установленную в камере сгорания. Газообразные продукты сгорания поступают через направляющий аппарат на рабочие лопатки колеса газовой турбины и заставляют его вращаться в одном, определенном направлении. Газы, отработавшие в турбине, выпускаются в атмосферу через патрубок. Вал газовой турбины вращается в подшипниках.
По сравнению с поршневыми двигателями внутреннего сгорания газотурбинный двигатель обладает весьма существенными преимуществами. Правда, он тоже еще не свободен от недостатков, но они постепенно ликвидируются по мере развития конструкции.
Характеризуя газовую турбину, прежде всего следует отметить, что она, как и паровая турбина, может развивать большие обороты. Это дает возможность получать значительную мощность от гораздо меньших по размерам (по сравнению с поршневыми) и почти в 10 раз более легких по весу двигателей.
Вращательное движение вала является по существу единственным видом движения в газовой турбине, в то время как в двигателе внутреннего сгорания, помимо вращательного движения коленчатого вала, имеет место возвратно-поступательное движение поршня, а также сложное движение шатуна. Газотурбинные двигатели не требуют специальных устройств для охлаждения. Отсутствие трущихся деталей при минимальном количестве подшипников обеспечивают длительную работоспособность и высокую надежность газотурбинного двигателя.
Для питания газотурбинного двигателя используется керосин либо топлива типа дизельных.
Основная причина, которая сдерживает развитие автомобильных газотурбинных двигателей, заключается в необходимости искусственно ограничивать температуру газов, поступающих на лопатки турбины. Это снижает коэффициент полезного действия двигателя и приводит к повышенному удельному расходу топлива (на 1 л. с). Температуру газа приходится ограничивать для газотурбинных двигателей пассажирских и грузовых автомобилей в пределах 600-700°С, а в авиационных турбинах до 800-900°С потому, что еще очень дороги высокожаропрочные сплавы.
В настоящее время уже существуют некоторые способы повышения коэффициента полезного действия газотурбинных двигателей путем охлаждения лопаток, использования тепла отработавших газов для подогрева поступающего в камеры сгорания воздуха, производства газов в высоко эффективных свободно-поршневых генераторах, работающих по дизель-компрессорному циклу с высокой степенью сжатия и т. д. От успеха работ в этой области во многом зависит решение проблемы создания высокоэкономичного автомобильного газотурбинного двигателя.

Принципиальная схема двухвального газотурбинного двигателя с теплообменником

Большинство существующих автомобильных газотурбинных двигателей построено по так называемой двухвальной схеме с теплообменниками. Здесь для привода компрессора 1 служит специальная турбина 8, а для привода колес автомобиля - тяговая турбина 7. Валы турбин не соединены между собой. Газы из камеры сгорания 2 вначале поступают на лопатки турбины привода компрессора, а затем на лопатки тяговой турбины. Воздух, нагнетаемый компрессором, прежде чем поступить в камеры сгорания, подогревается в теплообменниках 3 за счет тепла, отдаваемого отработавшими газами. Применение двухвальной схемы создает выгодную тяговую характеристику газотурбинных двигателей, позволяющую сократить число ступеней в обычной коробке передач автомобиля и улучшить его динамические качества.

Ввиду того, что вал тяговой турбины механически не связан с валом турбины компрессора, число его оборотов может изменяться в зависимости от нагрузки, не оказывая существенного влияния на число оборотов вала компрессора. Вследствие этого характеристика крутящего момента газотурбинного двигателя имеет вид, представленный на рис., где для сопоставления нанесена также и характеристика поршневого автомобильного двигателя (пунктиром).
Из диаграммы видно, что у поршневого двигателя по мере уменьшения числа оборотов, происходящего под влиянием возрастающей нагрузки, крутящий момент вначале несколько возрастает, а затем падает. В то же время у двухвального газотурбинного двигателя крутящий момент автоматически возрастает по мере увеличения нагрузки. В результате необходимость в переключении коробки передач отпадает либо наступает значительно позже, чем у поршневого двигателя. С другой стороны, ускорения при разгоне у двухвального газотурбинного двигателя будут значительно большими.
Характеристика одновального газотурбинного двигателя отличается от показанной на рис. и, как правило, уступает, с точки зрения требований динамики автомобиля, характеристике поршневого двигателя (при равной мощности).

Принципиальная схема газотурбинного двигателя со свободно-поршневым генератором газа

Большую перспективу имеет газотурбинный двигатель. В этом двигателе газ для турбины вырабатывается в так называемом свободно-поршневом генераторе, представляющем собой двухтактный дизель и поршневой компрессор, объединенные в общем блоке. Энергия от поршней дизеля передается непосредственно поршням компрессора. Ввиду того, что движение поршневых групп осуществляется исключительно под действием давления газов и режим движения зависит только от протекания термодинамических процессов в дизельном и компрессорных цилиндрах, такой агрегат и называется свободно-поршневым. В его средней части расположен открытый с двух сторон цилиндр 4, имеющий прямоточную щелевую продувку, в котором протекает двухтактный рабочий процесс с воспламенением от сжатия. В цилиндре оппозитно перемещаются два поршня, один из которых 9 во время рабочего хода открывает, а во время возвратного хода закрывает выхлопные окна, прорезанные в стенках цилиндра. Другой поршень 3 также открывает и закрывает продувочные окна. Поршни связаны между собой легким реечным или рычажным синхронизирующим механизмом, не показанным на схеме. Когда они сближаются, воздух, заключенный между ними, сжимается; к моменту достижения мертвой точки температура сжимаемого воздуха становится достаточной для воспламенения топлива, которое впрыскивается через форсунку 5. В результате сгорания топлива образуются газы, обладающие высокой температурой и давлением; они заставляют поршни разойтись в стороны, при этом поршень 9 открывает выхлопные окна, через которые газы устремляются в газосборник 7. Затем открываются продувочные окна, через которые в цилиндр 4 поступает сжатый воздух, вытесняет из цилиндра выхлопные газы, смешивается с ними и также поступает в газосборник. За то время, пока продувочные окна остаются открытыми, сжатый воздух успевает очистить цилиндр от выхлопных газов и заполнить его, подготовив таким образом двигатель к следующему рабочему ходу.
С поршнями 3 и 9 связаны компрессорные поршни 2, двигающиеся в своих цилиндрах. При расходящемся ходе поршней идет всасывание воздуха из атмосферы в компрессорные цилиндры, при этом самодействующие впускные клапана 10 открыты, а выпускные 11 закрыты. При встречном ходе поршней впускные клапана закрыты, а выпускные открыты и через них воздух нагнетается в ресивер 6, окружающий дизельный цилиндр. Поршни двигаются навстречу друг другу за счет энергии воздуха, накопившейся в буферных полостях 1 во время предыдущего рабочего хода. Газы из сборника 7 поступают в тяговую турбину 8, вал которой соединен с трансмиссией. Следующее сопоставление коэффициентов полезного действия показывает, что описанный газотурбинный двигатель уже сейчас по своей эффективности не уступает двигателям внутреннего сгорания:
Дизель 0,26-0,35
Двигатель бензиновый 0,22-0,26
Газовая турбина с камерами сгорания постоянного объема без теплообменника 0,12-0,18
Газовая турбина с камерами сгорания постоянного объема с теплообменником 0,15-0,25
Газовая турбина со свободно-поршневым генератором газа 0,25-0,35

Таким образом, КПД лучших образцов турбин не уступает КПД дизелей. Не случайно поэтому количество экспериментальных газотурбинных автомобилей различного типа возрастает с каждым годом. Все новые фирмы в различных странах объявляют о своих работах в этой области.

Схема реального газотурбинного двигателя

Этот двухкамерный двигатель, без теплообменника, имеет эффективную мощность 370 л. с. Топливом для него служит керосин. Скорость вращения вала компрессора достигает 26 000 об/мин, а скорость вращения вала тяговой турбины от 0 до 13 000 об/мин. Температура газов, поступающих на лопатки турбины, равна 815° Ц, давление воздуха на выходе из компрессора - 3,5 ат. Общий вес силовой установки, предназначенной для гоночного автомобиля, составляет 351 кг, причем газопроизводящая часть весит 154 кг, а тяговая часть с коробкой передач и передачей на ведущие колеса - 197 кг.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png