ГОСТ Р 52068-2003

Группа Б19

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

БЕНЗИНЫ

Определение стабильности в условиях ускоренного окисления
(индукционный период)

Gasolines. Method for determination of oxidation stability (induction period)



ОКС 75.160.20
ОКСТУ 0209

Дата введения 2004-01-01

Предисловие

1 РАЗРАБОТАН Техническим комитетом по стандартизации ТК 31 "Нефтяные топлива и смазочные материалы" (ОАО "ВНИИНП")

ВНЕСЕН Департаментом нефтепереработки Минэнерго РФ

2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 4 июня 2003 г. N 180-ст

3 ВВЕДЕН ВПЕРВЫЕ

4 Настоящий стандарт представляет собой аутентичный текст ASTM D 525-99а "Стандартный метод определения окислительной стабильности бензина (индукционный период)"

1 Область применения

1 Область применения

1.1 Настоящий стандарт устанавливает метод определения стабильности (индукционного периода) бензина в условиях ускоренного окисления.

Примечания

1 Этот метод не предназначен для определения стабильности компонентов бензина, в частности, компонентов с высоким процентом низкокипящих непредельных соединений, так как они могут создать взрывоопасные условия в аппаратуре, но из-за неизвестной природы определенных образцов для защиты оператора комплект бомбы должен включать взрывозащитный диск.

2 Определение окислительной стабильности бензина путем определения потенциальных смол указано в методе испытания или в методе .

3 Точностные данные получены на бензинах, полученных из источников углеводородов без кислородсодержащих соединений.

1.2 Давление измеряют в СИ в килопаскалях (кПа), а температуру - в градусах Цельсия (°С).

1.3 Настоящий стандарт может включать использование опасных материалов, операций и оборудования.

Соответствующие мероприятия по технике безопасности и охране здоровья устанавливает пользователь.

2 Нормативные ссылки

3 Термины и определения

3.1 В настоящем стандарте использованы следующие термины с соответствующими определениями.

3.1.1 точка перегиба: Точка на кривой давление-время, которой предшествует падение давления точно на 14 кПа в течение 15 мин и за которой следует падение давления не менее чем на 14 кПа через 15 мин.

3.1.2 индукционный период: Время, прошедшее между моментом помещения бомбы в баню и точкой перегиба при 100 °С.

4 Сущность метода

4.1 Образец окисляют в бомбе, предварительно наполненной кислородом при 15-25 °С и давлении 690-705 кПа, и нагревают до 98-102 °С.

Давление постоянно регистрируют или записывают через установленные интервалы до достижения точки перегиба.

За индукционный период при температуре испытания принимают время, необходимое для достижения образцом этой точки, по нему рассчитывают индукционный период при 100 °С .

Примечание - Предупреждение. Дополнительно к другим мерам техники безопасности бомбу следует снабдить соответствующим защитным экраном.

5 Значение и использование

5.1 Индукционный период характеризует также склонность бензина к образованию смол при хранении. Следует признать, что образование смол при хранении может значительно меняться в различных условиях хранения и с различными бензинами.

6 Аппаратура

6.1 Бомба для окисления, стеклянный сосуд для образца и крышка, вспомогательное оборудование, манометр и баня для окисления (приложение А).

6.2 Термометры 22С по спецификации Е1 или 24С по спецификации IP с пределами измерения 95-103 °С.

Примечание - Допускается использовать сенсорные температурные устройства, охватывающие необходимый температурный диапазон (термопары или платиновые термометры сопротивления), обеспечивающие равноценную или лучшую точность.

7 Реактивы и материалы

7.1 Растворитель смол

Смесь равных объемов толуола и ацетона чистотой не менее 99%.

7.2 Кислород

Сверхсухой кислород чистотой не менее 99,6%.

8 Отбор проб

8.1 Отбор проб - по ASTM D 4057.

9 Подготовка к испытанию

9.1 Стеклянный сосуд для образца промывают растворителем до полной очистки от смол. Тщательно ополаскивают водой и погружают сосуд для образца и крышку в моющий осветляющий раствор со слабощелочным или нейтральным рН. Тип моющего средства и условия его использования устанавливают в лаборатории.

Критерием удовлетворительной очистки использованных сосудов для образцов и крышек должно быть соответствие качеству очистки, достигаемому при использовании раствора хромовой кислоты (вымачивание в течение 6 ч в свежей хромовой кислоте с последующей промывкой дистиллированной водой и сушкой или использование некоторых других растворов, также сильно окисляющих, но не содержащих хромовой кислоты).

Для такого сравнения могут быть использованы визуальный осмотр или обнаружение потери массы при нагревании химической посуды в условиях испытания.

Чистка моющим средством позволяет избежать потенциальных опасностей и неудобств, связанных с использованием растворов коррозионно-агрессивной и сильно окисляющей кислоты, которая остается стандартной процедурой очистки и может быть альтернативой предпочтительной процедуре - очистке моющими средствами.

9.2 Вынимают сосуд и крышку из очищающего раствора с помощью коррозионно-стойкого стального пинцета и далее действуют только пинцетом.

Тщательно промывают их сначала водопроводной водой, затем дистиллированной водой и сушат в печи при 100-150 °С не менее 1 ч.

9.3 Сливают капли бензина из бомбы и вытирают внутреннюю поверхность бомбы и крышки сначала чистой тканью, смоченной растворителем смол, затем чистой сухой тканью.

Вынимают наливной стержень из ствола, тщательно очищают от малейших капель бензина и смолы ствол и игольчатый клапан растворителем смол.

Бомба, клапан и соединительные трубки должны быть тщательно высушены перед началом каждого испытания.

Примечание - Предостережение. Летучие перекиси, которые могли образоваться во время предыдущего испытания, могут скапливаться в оборудовании, создавая потенциально взрывоопасную среду, поэтому заливной стержень, ствол и игольчатый клапан необходимо тщательно очищать после каждого испытания.

10 Проведение испытания

10.1 Доводят бомбу и испытуемый бензин до температуры 15-25 °С. Помещают в бомбу стеклянный сосуд для образца и наливают (50±1) см образца или (50±1) см образца помещают в стеклянный сосуд и после этого помещают его в бомбу. Закрывают сосуд крышкой, закрывают бомбу и, пользуясь быстро деблокирующейся пневматической муфтой, вводят кислород до тех пор, пока не будет достигнуто давление 690-705 кПа. Дают возможность газу в бомбе медленно вытекать, чтобы удалить первоначально присутствовавший воздух. (Сбрасывают давление с равномерной скоростью не выше 345 кПа в 1 мин через игольчатый клапан).

Снова вводят кислород до достижения давления 690-705 кПа и проверяют на утечку, игнорируя первоначальное быстрое падение давления (обычно не более 40 кПа), которое может наблюдаться в результате растворения кислорода в образце.

Если скорость падения давления не превышает 7 кПа через 10 мин, считают, что утечек нет и приступают к испытанию без допрессовки.

10.2 Загруженную бомбу помещают в сильно кипящую водяную баню или соответствующую жидкостную баню, снабженную механическим перемешиванием, действуя осторожно, чтобы не допустить встряхивания, и записывают момент погружения как время начала испытания.

Поддерживают температуру жидкостной бани 98-102 °С. Во время испытания считывают температуру с точностью до 0,1 °С через определенные промежутки времени и записывают среднюю температуру с точностью до 0,1 °С как температуру испытания.

Ведут непрерывную запись давления в бомбе или, если используют индикаторный манометр, снимают показания давления через каждые 15 мин или более короткие интервалы.

Если в течение первых 30 мин испытания появляется утечка (о чем свидетельствует устойчивое падение давления, значительно превышающее 14 кПа за 15 мин), испытание бракуют.

Продолжают испытание до достижения точки, которой предшествует падение давления точно 14 кПа в течение 15 мин и за которой следует падение не менее чем на 14 кПа за 15 мин.

Примечание - Предостережение. Если испытание проводят в регионе, где атмосферное давление устойчиво ниже нормального (101,3 кПа), разрешается добавлять в водяную баню жидкость с более высокой температурой кипения для поддержания рабочей температуры бани как можно ближе к 100 °С.


При использовании жидкости, отличной от воды, необходимо проверить ее совместимость с уплотнителями бомбы.

10.3 За индукционный период при температуре испытания принимают время в минутах с момента помещения бомбы в баню до достижения точки перегиба.

10.4 Бомбу охлаждают менее чем за 30 мин до комнатной температуры, используя окружающий воздух или воду температурой менее 35 °С, затем медленно сбрасывают давление через игольчатый клапан со скоростью не более 345 кПа/мин.

При подготовке к следующему испытанию бомбу и контейнер для образца промывают.

11 Обработка результатов

11.1 Время от помещения бомбы в баню (в минутах) до достижения точки перегиба является измеряемым индукционным периодом при температуре испытания.

11.2 Метод расчета

Рассчитывают индукционный период при 100 °С по одному из следующих уравнений:

а) температура испытания выше 100 °С

Индукционный период при 100 °С, мин, =; (1)

б) температура испытания ниже 100 ° С

Индукционный период при 100 °С, мин, =; (2)

где - индукционный период при температуре испытания, мин;

- температура испытания, если она выше 100 °С;

- температура испытания, если она ниже 100 °С.

12 Запись результатов

12.1 Индукционный период при 100 °С, рассчитанный по 11.2, записывают с точностью до 1 мин.

12.2 Если испытание было остановлено до наблюдения падения давления, требуемого в 10.2, но после того, как была превышена спецификация продукта, то записывают результат как более минут, где - спецификация продукта в минутах.

13 Точность метода и отклонение

13.1 Точность метода согласно статистическому анализу результатов межлабораторных испытаний:

13.1.1 Повторяемость (сходимость)

Расхождение результатов двух определений, полученных одним и тем же оператором на одном и том же аппарате при постоянных рабочих условиях на идентичном испытуемом материале и длительном процессе работы при нормальном и правильном исполнении метода может превысить 5% только в одном случае из двадцати.

13.1.2 Воспроизводимость

Расхождение двух отдельных и независимых результатов испытания, полученных разными операторами, работающими в разных лабораториях на идентичном материале, в длительном процессе работы при нормальном и правильном исполнении метода может превысить 10% только в одном случае из двадцати.

13.2 Отклонение

Ввиду отсутствия критерия определения отклонения в сочетании испытание - продукт отклонение не может быть установлено.

Примечание - Значения точности, приведенные выше, для индукционного периода были получены при применении в качестве источника тепла кипящей водяной бани.


При применении других источников тепла эти значения точности нельзя применять к результатам испытаний.

ПРИЛОЖЕНИЕ А (обязательное). Аппаратура, применяемая для определения стабильности

ПРИЛОЖЕНИЕ А
(обязательное)

А.1 Аппаратура

А.1.1. Аппаратура

А.1.1.1 Бомба

Бомба должна быть изготовлена из коррозионно-стойкой стали; внутренние размеры части, в которую помещают реакционную смесь бензина с кислородом, приведены на рисунке А.1.1.

На рисунке А.1.1 приведена бомба и относящаяся к ней аппаратура для выполнения методов испытания ASTM D 525, изготовленная разными производителями. Также пригодны бомбы, соответствующие методу испытания ASTM D 525/1980-1995, как и IP 40, но должен быть приложен диск, защищающий от взрыва. Небольшие вариации внешних размеров не влияют на результаты испытания, но специального изучения их потенциального влияния на метод, если оно есть, не проводилось.

В целях безопасности установлена минимальная толщина стенки, равная 5 мм.

Примечание - Осторожно! Компоненты комплекта бомбы, полученные от разных поставщиков, могут быть несовместимы.

А.1.1.1.1 Для облегчения чистки и предотвращения коррозии внутренние поверхности бомбы и крышки должны быть хорошо отполированы (шероховатость поверхности 0,20-0,40 мкм).

А.1.1.1.2 Способ закрывания, материал прокладки и внешние размеры (многоугольник или с насечкой) произвольны при условии соблюдения ограничений, перечисленных в А.1.1.1.3 и А.1.1.1.4.

Примечание - Чтобы гарантировать годность к эксплуатации, следует выполнять первоначальное испытание бомбы с периодической проверкой.

Рисунок А.1.1 - Бомба для определения стабильности бензина к окислению

A.1.1.1.3 Бомба должна выдерживать рабочее давление 1240 кПа при 100 °С, предел прочности должен быть равен пределу прочности бомбы, изготовленной из легированной стали, содержащей 18% (по массе) хрома, 8% (по массе) никеля. Подходящим материалом является легированная сталь, соответствующая спецификации из нержавеющей стали 303 или 304.

А.1.1.1.4 Уплотнение бомбы не должно давать утечки, когда бомба наполнена кислородом с давлением 690-705 кПа при 15-25 °С и погружена в баню при 100 °С.

Желательно, чтобы запирающее кольцо было изготовлено из сплава, отличающегося от корпуса, если сопрягающаяся резьба двух деталей должна двигаться относительно друг друга при приложении нагрузки для затягивания.

А.1.1.2 Прокладка

Используют любой подходящий прокладочный материал при условии, что он выдерживает испытание, указанное в А.1.1.2.1.

А.1.1.2.1 Помещают прокладку испытуемого типа в пустую бомбу и используют аналогичную прокладку для создания уплотнения с крышкой. Наполняют бомбу кислородом при давлении 690-705 кПа и погружают в баню при 100 °С.

Если давление не падает более чем на 14 кПа относительно максимального в течение периода 24 ч при постоянной температуре бани ±1,0 °С, прокладку можно считать удовлетворительной.

А.1.1.3 Размеры стеклянного сосуда для образца и крышки приведены на рисунке А.1.2.

А.1.1.3.1 Крышка, способная предотвращать попадание в образец вещества, стекающего обратно по стволу бомбы, и обеспечивать свободный доступ кислорода к образцу (рисунок А.1.2).

1 - слив; 2 - крышка; 3 - две прорези или углубления

Рисунок А.1.2 - Стеклянный сосуд для образца и крышка

А.1.1.4 Ствол бомбы

Ствол и наливной стержень должны быть изготовлены из того же материала, что и крышка бомбы. Размеры приведены на рисунке А.1.1.

А.1.1.4.1 Наливной стержень и внутренняя поверхность ствола должны быть хорошо отполированными (шероховатость поверхности 0,20-0,40 мкм), чтобы облегчить чистку и предотвратить коррозию.

Ствол должен быть установлен в положение, показанное на рисунке А.1.1, с круглой металлической пластиной диаметром 89 мм, которая служит крышкой для бани, когда бомба находится на месте.

А.1.1.5 Сборный диск

Ствол бомбы должен быть снабжен комплектом диска, защищающим от взрыва, из нержавеющей стали, разрушающейся при давлении более 1530 кПа ±10%.

Любой выталкиваемый газ должен быть направлен от оператора.

Примечание - Следует предусмотреть безопасный выпуск образующихся газов или пламени, а также меры безопасности, если произойдет разрыв диска, защищающего от взрыва.

А.1.1.6 Соединение

Необходимо обеспечить соединение манометра и герметично закрывающего игольчатого клапана со стволом бомбы (рисунок А.1.1).

Чтобы облегчить ввод кислорода в бомбу, необходимо использовать пневматическую муфту быстрого действия, установленную на игольчатом клапане.

А.1.1.7 Игольчатый клапан

Регулируемый клапан, пригодный для полного отключения, но оснащенный тонко заостренной иглой и отверстием.

Примечание - Клапан следует использовать во время продувки, повышения и понижения давления в бомбе с кислородом.

А.1.1.8 Манометр

Манометр индикаторного или записывающего типа для снятия показаний не менее 1380 кПа. Можно использовать датчики давления или устройства для цифрового считывания данных при условии точности определения.

А.1.1.8.1 Любая половина интервала шкалы (т.е. 345 кПа) между 690 и 1380 кПа должна быть длиной не менее 25 мм, измеренной по дуге шкалы. Цена деления должна быть 35 кПа или меньше. Точность должна быть 1% или менее всего интервала шкалы. Можно использовать другие равноценные метрические манометры.

А.1.1.8.2 Манометр может быть соединен с бомбой непосредственно или гибкой металлической или газостойкой полимерной трубкой, снабженной металлической оболочкой с сопротивлением давлению, удовлетворяющим вышеуказанные условия. Общий объем гибкой трубки, соединений и ствола с наливным стержнем на месте не должен превышать 30 см.

Примечание - Предостережение. Заказывая оборудование для этого испытания, необходимо требовать от изготовителя, чтобы манометр и игольчатый клапан были пригодны для использования с кислородом.

А.1.1.9 Баня для окисления

Жидкостная баня вместимостью не менее 18 дм для одной бомбы и дополнительные 8 дм для каждой дополнительной бомбы в составных комплектах. Размеры бани должны обеспечивать глубину жидкости в бане не менее 290 мм.

Все новые бани должны быть снабжены самовозвращающимся в исходное положение устройством для гарантии того, что обогреватель выключен, если уровень жидкости в бане падает ниже безопасного.

При использовании бань без этого устройства необходимо иметь ретросмонтированное оборудование для обеспечения безопасности эксплуатации.

А.1.1.9.1 Верхняя часть бани должна быть с отверстиями соответствующего диаметра, чтобы разместить бомбу и плотно установить закрывающую пластину, прикрепленную к стволу бомбы. Баня должна быть оснащена термометром, хорошо закрепленным в таком положении, чтобы отметка 97 °С на термометре была выше крышки бани.

Если для управления температурой бани применяется термометр, то должна быть предусмотрена такая позиция кармана термометра, чтобы метка термометра 97 °С находилась выше крышки бани.

Для других сенсорных температурных устройств необходимо обеспечивать контроль температуры.

А.1.1.9.2 Находясь на месте, верхняя сторона крышки бомбы должна быть погружена не менее чем на 50 мм от поверхности жидкости в бане.

А.1.1.9.3 Необходимы дополнительные крышки, чтобы закрывать отверстия, когда бомбы находятся вне бани.

Баня должна быть оснащена конденсатором и источником тепла для поддержания интенсивного кипения жидкости в бане.

При использовании жидкостной среды, отличающейся от воды, следует применять соответствующий механический смеситель, чтобы поддерживать однородность (равномерность) жидкостной бани при (100±2) °С.

Примечание - Применяемые электрические агрегаты (блоки, узлы) могут иметь теплоемкости, скорости нагрева и характеристики теплопередачи, отличающиеся от жидкостной бани. Агрегат электронагрева можно использовать вместо жидкостной бани до тех пор, пока наглядно видно, что скорость нагревания образца и температура образца такие же, как при применении жидкостной бани.

А.1.1.10 Термометр с диапазоном измерения 95-103 °С, удовлетворяющий требованиям, указанным в Спецификации E.I или Спецификациях на термометры IP.

Вместо термометров, указанных в 6.2, можно использовать сенсорные температурные устройства, охватывающие необходимый температурный диапазон (термопары и платиновые термометры сопротивления), способные обеспечить равноценную или лучшую точность.

ПРИЛОЖЕНИЕ Б (обязательное). Перечень нормативных документов, применяемых в настоящем стандарте

ПРИЛОЖЕНИЕ Б
(обязательное)

ASTM D 873 Метод определения окислительной стабильности авиационных топлив (Потенциальные смолы)

ASTM D 4057 Руководство по ручному отбору проб нефти и нефтепродуктов

Е1 Спецификация на термометры ASTM

IP 138 Метод определения окислительной стабильности авиационного бензина

ASTM Bulletin, (N 153, август 1948, с. 99-102, часть IV) Нефть и нефтепродукты




Текст документа сверен по:
официальное издание
М.: ИПК Издательство стандартов, 2003

Министерство образования РФ

Волжский инженерно-строительный институт

Волгоградской государственной Архитектурно-строительной академии

КОНТРОЛЬНАЯ РАБОТА

по дисциплине

«ЭТЖ и ГСМ»

Выполнил: студент

СДМ-2-00-УЗ

Власьевский Д.А.

Проверил:

Преподаватель

Павлов Евгений Васильевич

Волжский 2002

Вариант 23.

Вопросы контрольной работы.

Задание № 1.

С 16 Н 34 и С 10 Н 7 CH

Требуется определить:

а) теплоту сгорания топлива высшую (Q в);

б) теплоту сгорания топлива низшую (Q н);

Задание № 2.

Поясните, что определяет показатель «индукционный период» бензина. Как и чем, он определяется? Назовите численные значения этого показателя для различных бензинов (автомобильных, авиационных).

Задание № 3

Задание № 4

Назовите, известные простейшие методы умягчения охлаждающей воды для двигателей. Вода какой жесткости подлежит умягчению при использовании в двигателе. Методы удаления накипи с поверхностей системы охлаждения.

Задание № 5

Укажите, в чем отличие моторных масел для дизельных и карбюраторных двигателей?

1) Разные основы масел;

2) Большое количество присадок в дизельных маслах;

3) Лучшая моющая способность масел для карбюраторных двигателей.

Задание № 1.

Дизельный двигатель работает на топливе углеводородного состава С 16 Н 34 и С 10 Н 7 CH 3 , которые распределены в топливе поровну. Горение топлива происходит с коэффициентом избытка воздуха a=1,5.

Требуется определить:

а) теплоту сгорания топлива высшую (Q в);

б) теплоту сгорания топлива низшую (Q н);

в) действительное количество воздуха, потребное для горения топлива ( действ);

г) цетановое число предлагаемого топлива.

а) Определяемое топливо состоит из смеси двух углеводородов в равных количествах, т.е. цетана С 16 Н 34 и альфаметилнафталина С 10 Н 7 CH 3 .

Зная, из каких углеводородов состоит топливо, определяем процентное содержание в нём углеводорода C и водорода H .

Определяем молекулярные веса углеводородов, входящих в состав топлива. Молекулярный вес цетана равен:

М C 16 H 34 =12·16+1·34=226 г/моль ,

откуда определяется процентное содержание C и H:

C =(192/226)100%=84,96 %

H =(34/226)100%=15,04 %

Соответственно:

М C 10 H 7 CH 3 =12·10+1·7+12+1·3=142 г/моль ,

C =(132/142)100%=92,96 %,

H =(10/142)100%=7,04 %.

Подсчитываем средний состав углерода и водорода:

C =(92,96+84,96)/2=88,96 %,

H =(7,04+15,04)/2=11,04 %.

Определим высшую и низшую теплоту сгорания топлива по формулам Менделеева:

Q в =81· C +300· H =81·88,96+300·11,04=10517,76 ккал /кг ,

б) Q н =81· C +246· H =81·88,96+246·11,04=9921,6 ккал /кг .

в) Для определения действительного количества воздуха при горении топлива необходимо, прежде всего, определить его теоретическое значение по формуле:

Теор. =(2,67C +8H )/23,2 кг /кг ,

Теор. =(2,67·88,96+8·11,04)/23,2=14,04 кг /кг .

Действительное количество воздуха, требуемое для горения топлива, определяем по выражению:

Действ =· теор. =1,5·14,04=21,06 кг /кг .

Значение цетанового числа топлива вытекает из его определения, т.е. процентного содержания цетана в такой смеси с альфаметилнафталином, которая по условиям самовоспламенения равноценна испытуемому топливу при испытании в одинаковых условиях.

Поскольку цетана в данном дизельном топливе 50%, то его цетановое число равно 50.

Задание № 2.

Поясните, что определяет показатель «индукционный период» бензина. Как и чем, он определяется? Назовите численные значения этого показателя для различных бензинов (автомобильных, авиационных).

Индукционным периодом оценивается показатель стабильности топлива, определяющий потенциальную способность топлива к смолообразованию.

Индукционным периодом бензина называется время (в минутах), в течение которого топливо находясь в условиях, благоприятных для окисления, практически не поглощает кислорода. Топливо окисляется в специальной бомбе изготовленной из нержавеющей стали при t=100 о С и давлении кислорода 0,7 МПа.

За длительность индукционного периода принимается время в минутах, с момента погружения бомбы в водяную баню до начала падения в ней давления. Момент падения давления в бомбе показывает начало активного поглощения топливом кислорода.

Индукционный период автомобильных бензинов составляет 900…1300 мин., авиационных – более 1300 мин.

Задание № 3

Назовите, какие кислоты, содержащиеся в топливах, относятся к классу органических кислот. Что характеризует показатель «кислотность топлива», как определяется, единицы измерения.

Органические кислоты, содержащиеся в топливе являются либо нафтеновыми и попадают с высококипящими фракциями бензина при перегонке нефти, либо продуктами окислительных процессов топлива при хранении.

Нафтеновые кислоты подвергают коррозии только цветные металлы, кислые продукты действуют агрессивно практически на все металлы.

Показателем кислотности оценивают содержание органических кислот в топливе. Под ним понимают количество щелочи КОН (в мг), необходимое для нейтрализации органических кислот в 100 мл топлива.

Природа индукционного периода при гидратации вяжущих является одним из наименее изученных вопросов химии цемента . В числе возможных причин замедления процесса гидратации называют образование поверхностного барьерного (пассивирующего) слоя, задержку зародышеобразования кристаллов гидратных фаз, концентрацию дефектов, сорбционное равновесие на поверхности гидратирующихся частиц вяжущего. Однако в ряде работ экспериментально установлено, что процесс гидратации прогрессирует под поверхностными гидратами, образование которых не может поэтому быть определяющей причиной возникновения индукционного периода.

Анализируя теории индукционного периода, X. Ф. У. Тейлор выделяет две группы гипотез, объясняющих замедление процессов гидратации вяжущих . Согласно первой группе гипотез, индукционный период имеет место из-за задержки зародышеобразования или формирования вторичных продуктов гидратации. Часть исследователей считает, что таким гидратом является гидроксид кальция (гипотеза 1), остальные - CSH (гипотеза 2). Во второй группе гипотез принято, что новообразования, сформировавшиеся на начальном этапе твердения, действуют как барьер и индукционный период оканчивается с его разрушением из-за фазового превращения или процессов старения (гипотеза 3) или из-за осмотического разрыва или подобного родственного эффекта (гипотеза 4). В последующем гипотезы 3 и 4 не получили экспериментального подтверждения. И. Джавед, Д. Менетрье, Дж. Скальпы в процессе электронноскопических исследований не наблюдали наличия однородных поверхностей защитного слоя и пришли к выводу, что образование поверхностных гидратов не может быть причиной индукционного периода. Значительный интерес представляет сопоставление сопутствующих индукционному периоду эффектов, зафиксированных различными экспериментальными методами. В ряде работ отмечается связь индукционного периода с концентрацией ионов Са2+, К+, Na+ Fe3+, SO2- и ОН- в жидкой фазе. Р. Гречухна на основании изучения концентрации различных ионов в жидкой фазе сделал вывод о периодическом чередовании процессов растворения безводных и осажденных гидратных продуктов. Индукционный период соответствует процессу растворения, а период схватывания - выпадению из жидкой фазы различных по составу новообразований.

Установлено, что реакционная способность клинкерных минералов зависит от концентрации СаО и SiO2 вблизи их поверхности. Отмечается, что на границе раздела твердой и жидкой фаз в индукционном периоде формируются крутые концентрационные градиенты, обусловливающие снижение реакционной способности вяжущего. Следует отметить существенное различие концентрации растворенных ионов в объеме жидкой фазы и у поверхности негидратированных частиц. В результате отсутствует тесная корреляция между концентрацией в объеме жидкой фазы (эти данные наиболее часто приводятся в публикациях) и торможением процесса гидратации. Согласно Р. Айлеру , степень пересыщения определяется функциональной зависимостью от значения энергии поверхностей раздела. В процессе твердения цемента в результате гидролиза, диспергации частиц, обнажения негидратированных поверхностей, изменения состояния жидкой фазы энергия поверхностей раздела периодически меняется, что в конечном счете сказывается на скорости зародышеобразования.

К. Фуджи при исследовании гидратации а-полуводного гипса, C3S в индукционном периоде зафиксировано образование адсорбционного слоя молекул воды на поверхности частиц и возникновение первичных зародышей типа CSH.

Показано также, что индукционный период заканчивается при достижении максимальной концентрации Са2+ в жидкой фазе. Период ускорения для C2S характеризуется кристаллизацией и ростом зародышей вторичного гидрата CSH.

Формирование специфического состояния жидкой фазы на начальных этапах твердения подтверждается экспериментальным ходом изменения диэлектрической проницаемости цементного теста. Эти данные свидетельствуют о переводе жидкости затворения в деформированное состояние под влиянием поверхностных сил и формировании поляризованной структуры пограничных жидких слоев.

Стокхаузен Н. указывает на изменение химической активности воды в зависимости от размера пор, в которых она находится. Согласно этим данным вободная вода наблюдается в порах размером свыше 100 нм (I тип). Вода, конденсированная в капиллярах, обладает пониженным химическим потенциалом «следствие взаимодействия с твердой поверхностью (II тип). В порах конденсированная вода является структурной. Межплоскостная вода, адсорбированная в виде слоев с толщиной, не превышающей 2,5 монослоя, относится к IV типу.

Исходя из этой классификации, индукционный период можно объяснить формированием на определенном этапе гвердения в результате диспергационных процессов и гидратообразования такой капиллярно-пористой структуры, когда в окружении негидратированных частиц преобладают поры размером менее 100 нм. В результате частички цемента окружены жидкой фазой с пониженным химическим потенциалом. Для возобновления интенсивной гидратации цемента необходима перестройка сформировавшейся первичной капиллярно-пористой структуры.

Важная роль в характере протекания индукционного периода отводится концентрации дефектов в решетке клинкерных минералов или наличию на поверхности негидратированных частиц активных центров.

П. Фиренс, И. Верхаген установили взаимосвязь между концентрацией активных центров и продолжительностью индукционного периода. Высказано предположение, что индукционный период включает три явления: основную реакцию и две вспомогательные. Основная реакция представляет собой хемсорбцию воды на активных центрах поверхности частиц. Вспомогательные реакции включают растворение небольших количеств вяжущего и гидратацию оксида кальция.

Для выяснения природы процессов происходящих в индукционный период, необходимо изучение взаимосвязи гидрато- и структурообразования в твердеющем цементном тесте. С учетом отмеченных выше закономерностей, сопровождающие индукционный период, были проанализированы кинетические зависимости свойств твердеющего цемента, полученные с использованием резонансной методики (см. рис. 7.7).

ГОСТ Р 52068-2003

БЕНЗИНЫ

Определение стабильности в условиях ускоренного
окисления (индукционный период)

ГОССТАНДАРТ РОССИИ

Москва

Предисловие

1 РАЗРАБОТАН Техническим комитетом по стандартизации ТК 31 «Нефтяные топлива и смазочные материалы» (ОАО «ВНИИНП»)

ВНЕСЕН Департаментом нефтепереработки Минэнерго РФ

2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 4 июня 2003 г. № 180-ст

3 ВВЕДЕН ВПЕРВЫЕ

4 Настоящий стандарт представляет собой аутентичный текст ASTM D 525-99а «Стандартный метод определения окислительной стабильности бензина (индукционный период)»

ГОСТ Р 52068-2003

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

БЕНЗИНЫ

Определение стабильности в условиях ускоренного окисления (индукционный период)

Gasolines. Method for determination of oxidation stability (induction period)

Дата введения 2004-01-01

1 Область применения

1.1 Настоящий стандарт устанавливает метод определения стабильности (индукционного периода) бензина в условиях ускоренного окисления.

Примечания .

1 Этот метод не предназначен для определения стабильности компонентов бензина, в частности, компонентов с высоким процентом низкокипящих непредельных соединений, так как они могут создать взрывоопасные условия в аппаратуре, но из-за неизвестной природы определенных образцов для защиты оператора комплект бомбы должен включать взрывозащитный диск.

2 Определение окислительной стабильности бензина путем определения потенциальных смол указано в методе испытания или в методе .

3 Точностные данные получены на бензинах, полученных из источников углеводородов без кислородсодержащих соединений.

1.2 Давление измеряют в СИ в килопаскалях (кПа),а температуру - в градусах Цельсия (°С).

1.3 Настоящий стандарт может включать использование опасных материалов, операций и оборудования.

Соответствующие мероприятия по технике безопасности и охране здоровья устанавливает пользователь.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на нормативные документы, указанные в приложении .

3 Термины и определения

3.1 В настоящем стандарте использованы следующие термины с соответствующими определениями.

3.1.1 точка перегиба: Точка на кривой давление - время, которой предшествует падение давления точно на 14 кПа в течение 15 мин и за которой следует падение давления не менее чем на 14 кПа через 15 мин.

3.1.2 индукционный период: Время, прошедшее между моментом помещения бомбы в баню и точкой перегиба при 100 °С.

4 Сущность метода

4.1 Образец окисляют в бомбе, предварительно наполненной кислородом при 15 -25 ° С и давлении 690 - 705 кПа, и нагревают до 98-102 С.

Давление постоянно регистрируют или записывают через установленные интервалы до достижения точки перегиба.

За индукционный период при температуре испытания принимают время, необходимое для достижения образцом этой точки, по нему рассчитывают индукционный период при 100 °С .

Примечание - Предупреждение. Дополнительно к другим мерам техники безопасности бомбу следует снабдить соответствующим защитным экраном.

5 Значение и использование

5.1 Индукционный период характеризует также склонность бензина к образованию смол при хранении. Следует признать, что образование смол при хранении может значительно меняться в различных условиях хранения и с различными бензинами.

6 Аппаратура

6.1 Бомба для окисления, стеклянный сосуд для образца и крышка, вспомогательное оборудование, манометр и баня для окисления (приложение ).

6.2 Термометры 22С по спецификации Е1 [ ] или 24 С по спецификации IP с пределами измерения 95 - 103 °С.

Примечание - Допускается использовать сенсорные температурные устройства, охватывающие необходимый температурный диапазон (термопары или платиновые термометры сопротивления), обеспечивающие равноценную или лучшую точность.

7 Реактивы и материалы

7.1 Растворитель смол

Смесь равных объемов толуола и ацетона чистотой не менее 99 %.

7.2 Кислород

Сверхсухой кислород чистотой не менее 99,6 %.

8 Отбор проб

8.1 Отбор проб -по ASTM D 4057.

9 Подготовка к испытанию

9.1 Стеклянный сосуд для образца промывают растворителем до полной очистки от смол. Тщательно ополаскивают водой и погружают сосуд для образца и крышку в моющий осветляющий раствор со слабощелочным или нейтральным рН. Тип моющего средства и условия его использования устанавливают в лаборатории.

Критерием удовлетворительной очистки использованных сосудов для образцов и крышек должно быть соответствие качеству очистки, достигаемому при использовании раствора хромовой кислоты (вымачивание в течение 6 ч в свежей хромовой кислоте с последующей промывкой дистиллированной водой и сушкой или использование некоторых других растворов, также сильно окисляющих, но не содержащих хромовой кислоты).

Для такого сравнения могут быть использованы визуальный осмотр или обнаружение потери массы при нагревании химической посуды в условиях испытания.

Чистка моющим средством позволяет избежать потенциальных опасностей и неудобств, связанных с использованием растворов коррозионно-агрессивной и сильно окисляющей кислоты, которая остается стандартной процедурой очистки и может быть альтернативой предпочтительной процедуре - очистке моющими средствами.

9.2 Вынимают сосуд и крышку из очищающего раствора с помощью коррозионно-стойкого стального пинцета и далее действуют только пинцетом.

Тщательно промывают их сначала водопроводной водой, затем дистиллированной водой и сушат в печи при 100 - 150 °С не менее 1 ч.

9.3 Сливают капли бензина из бомбы и вытирают внутреннюю поверхность бомбы и крышки сначала чистой тканью, смоченной растворителем смол, затем чистой сухой тканью.

Вынимают наливной стержень из ствола, тщательно очищают от малейших капель бензина и смолы ствол и игольчатый клапан растворителем смол.

Бомба, клапан и соединительные трубки должны быть тщательно высушены перед началом каждого испытания.

Примечание - Предостережение. Летучие перекиси, которые могли образоваться во время предыдущего испытания, могут скапливаться в оборудовании, создавая потенциально взрывоопасную среду, поэтому заливной стержень, ствол и игольчатый клапан необходимо тщательно очищать после каждого испытания.

10 Проведение испытания

10.1 Доводят бомбу и испытуемый бензин до температуры 15 - 25 °С. Помещают в бомбу стеклянный сосуд для образца и наливают (50 ± 1) см 3 образца или (50 ± 1) см 3 образца помещают в стеклянный сосуд и после этого помещают его в бомбу. Закрывают сосуд крышкой, закрывают бомбу и, пользуясь быстро деблокирующейся пневматической муфтой, вводят кислород до тех пор, пока не будет достигнуто давление 690 - 705 кПа. Дают возможность газу в бомбе медленно вытекать, чтобы удалить первоначально присутствовавший воздух. (Сбрасывают давление с равномерной скоростью не выше 345 кПа в 1 мин через игольчатый клапан).

Снова вводят кислород до достижения давления 690 - 705 кПа и проверяют на утечку, игнорируя первоначальное быстрое падение давления (обычно не более 40 кПа), которое может наблюдаться в результате растворения кислорода в образце.

Если скорость падения давления не превышает 7 кПа через 10 мин, считают, что утечек нет и приступают к испытанию без допрессовки.

10.2 Загруженную бомбу помещают в сильно кипящую водяную баню или соответствующую жидкостную баню, снабженную механическим перемешиванием, действуя осторожно, чтобы не допустить встряхивания, и записывают момент погружения как время начала испытания.

Поддерживают температуру жидкостной бани 98 - 102 °С. Во время испытания считывают температуру с точностью до 0,1 °С через определенные промежутки времени и записывают среднюю температуру с точностью до 0,1 °С как температуру испытания.

Ведут непрерывную запись давления в бомбе или, если используют индикаторный манометр, снимают показания давления через каждые 15 мин или более короткие интервалы.

Если в течение первых 30 мин испытания появляется утечка (о чем свидетельствует устойчивое падение давления, значительно превышающее 14 кПа за 15 мин), испытание бракуют.

Продолжают испытание до достижения точки, которой предшествует падение давления точно 14 кПа в течение 15 мин и за которой следует падение не менее чем на 14 кПа за 15 мин.

Примечание - Предостережение. Если испытание проводят в регионе, где атмосферное давление устойчиво ниже нормального (101,3 кПа), разрешается добавлять в водяную баню жидкость с более высокой температурой кипения для поддержания рабочей температуры бани как можно ближе к 100 °С.

При использовании жидкости, отличной от воды, необходимо проверить ее совместимость с уплотнителями бомбы.

10.3 За индукционный период при температуре испытания принимают время в минутах с момента помещения бомбы в баню до достижения точки перегиба.

10.4 Бомбу охлаждают менее чем за 30 мин до комнатной температуры, используя окружающий воздух или воду температурой менее 35 °С, затем медленно сбрасывают давление через игольчатый клапан со скоростью не более 345 кПа/мин.

При подготовке к следующему испытанию бомбу и контейнер для образца промывают.

11 Обработка результатов

11.1 Время от помещения бомбы в баню (в минутах) до достижения точки перегиба является измеряемым индукционным периодом при температуре испытания.

11.2 Метод расчета [ ]

Рассчитывают индукционный период при 100 °С по одному из следующих уравнений:

а) температура испытания выше 100 ° С

Индукционный период при 100 ° С, мин, = (IP t )(1 + 0,101(t а - 100)); (1)

б) температура испытания ниже 100 ° С

Индукционный период при 100 °С, мин, = (IP t )(1 + 0,101 100 - t b )); (2)

где IP t - индукционный период при температуре испытания, мин;

t a - температура испытания, если она выше 100 °С;

t b - температура испытания, если она ниже 100 ° С.

12 Запись результатов

12.1 Индукционный период при 100 °С, рассчитанный по , записывают с точностью до 1 мин.

12.2 Если испытание было остановлено до наблюдения падения давления, требуемого в , но после того, как была превышена спецификация продукта, то записывают результат как более N минут, где N - спецификация продукта в минутах.

13 Точность метода и отклонение

13.1 Точность метода согласно статистическому анализу результатов межлабораторных испытаний:

13.1.1 Повторяемость (сходимость)

Расхождение результатов двух определений, полученных одним и тем же оператором на одном и том же аппарате при постоянных рабочих условиях на идентичном испытуемом материале и длительном процессе работы при нормальном и правильном исполнении метода может превысить 5 % только в одном случае из двадцати.

13.1.2 Воспроизводимость

Расхождение двух отдельных и независимых результатов испытания, полученных разными операторами, работающими в разных лабораториях на идентичном материале, в длительном процессе работы при нормальном и правильном исполнении метода может превысить 10 % только в одном случае из двадцати.

13.2 Отклонение

Ввиду отсутствия критерия определения отклонения в сочетании испытание - продукт отклонение не может быть установлено.

Примечание - Значения точности, приведенные выше, для индукционного периода были получены при применении в качестве источника тепла кипящей водяной бани.

При применении других источников тепла эти значения точности нельзя применять к результатам испытаний.

ПРИЛОЖЕНИЕ А

(обязательное)

Аппаратура, применяемая для определения стабильности

А.1 Аппаратура

А.1.1 Аппаратура

А.1.1.1 Бомба

Бомба должна быть изготовлена из коррозионно-стойкой стали; внутренние размеры части, в которую помещают реакционную смесь бензина с кислородом, приведена на рисунке .

На рисунке приведена бомба и относящаяся к ней аппаратура для выполнения методов испытания ASTM D 525, изготовленная разными производителями. Также пригодны бомбы, соответствующие методу испытания ASTM D 525/1980-1995, как и IP 40, но должен быть приложен диск, защищающий от взрыва. Небольшие вариации внешних размеров не влияют на результаты испытания, но специального изучения их потенциального влияния на метод, если оно есть, не проводилось.

В целях безопасности установлена минимальная толщина стенки, равная 5 мм.

Примечание - Осторожно! Компоненты комплекта бомбы, полученные от разных поставщиков, могут быть несовместимы.

А.1.1.1.1 Для облегчения чистки и предотвращения коррозии внутренние поверхности бомбы и крышки должны быть хорошо отполированы (шероховатость поверхности 0,20 - 0,40 мкм)

А.1.1.1.2 Способ закрывания, материал прокладки и внешние размеры (многоугольник или с насечкой) произвольны при условии соблюдения ограничений, перечисленных в и .

Примечание - Чтобы гарантировать годность к эксплуатации, следует выполнять первоначальное испытание бомбы с периодической проверкой.

Рисунок А.1.1 - Бомба для определения стабильности бензина к окислению

А.1.1.1.3 Бомба должна выдерживать рабочее давление 1240 кПа при 100 °С, предел прочности должен быть равен пределу прочности бомбы, изготовленной из легированной стали, содержащей 18 % (по массе) хрома, 8 % (по массе) никеля. Подходящим материалом является легированная сталь, соответствующая спецификации из нержавеющей стали 303 или 304.

А.1.1.1.4 Уплотнение бомбы не должно давать утечки, когда бомба наполнена кислородом с давлением 690 - 705 кПа при 15 - 25 °С и погружена в баню при 100 ° С.

Желательно, чтобы запирающее кольцо было изготовлено из сплава, отличающегося от корпуса, если сопрягающаяся резьба двух деталей должна двигаться относительно друг друга при приложении нагрузки для затягивания.

А.1.1.2 Прокладка

Используют любой подходящий прокладочный материал при условии, что он выдерживает испытание, указанное в .

А.1.1.2.1 Помещают прокладку испытуемого типа в пустую бомбу и используют аналогичную прокладку для создания уплотнения с крышкой. Наполняют бомбу кислородом при давлении 690 - 705 кПа и погружают в баню при 100 ° С.

Если давление не падает более чем на 14 кПа относительно максимального в течение периода 24 ч при постоянной температуре бани ± 1,0 °С, прокладку можно считать удовлетворительной.

А.1.1.3 Размеры стеклянного сосуда для образца и крышки приведены на рисунке .

А.1.1.3.1 Крышка, способная предотвращать попадание в образец вещества, стекающего обратно по стволу бомбы, и обеспечивать свободный доступ кислорода к образцу (рисунок ).

1 - слив; 2 - крышка; 3 - две прорези или углубления

Рисунок А.1.2 - Стеклянный сосуд для образца и крышка

А.1.1.4 Ствол бомбы

Ствол и наливной стержень должны быть изготовлены из того же материала, что и крышка бомбы. Размеры приведены на рисунке .

А.1.1.4.1 Наливной стержень и внутренняя поверхность ствола должны быть хорошо отполированными (шероховатость поверхности 0,20 - 0,40 мкм), чтобы облегчить чистку и предотвратить коррозию.

Ствол должен быть установлен в положение, показанное на рисунке , с круглой металлической пластиной диаметром 89 мм, которая служит крышкой для бани, когда бомба находится на месте.

А.1.1.5 Сборный диск

Ствол бомбы должен быть снабжен комплектом диска, защищающим от взрыва, из нержавеющей стали, разрушающейся при давлении более 1530 кПа ± 10 %.

Любой выталкиваемый газ должен быть направлен от оператора.

Примечание - Следует предусмотреть безопасный выпуск образующихся газов или пламени, а также меры безопасности, если произойдет разрыв диска, защищающего от взрыва.

А.1.1.6 Соединение

Необходимо обеспечить соединение манометра и герметично закрывающего игольчатого клапана со стволом бомбы (рисунок ).

Чтобы облегчить ввод кислорода в бомбу, необходимо использовать пневматическую муфту быстрого действия, установленную на игольчатом клапане.

А.1.1.7 Игольчатый клапан

Регулируемый клапан, пригодный для полного отключения, но оснащенный тонко заостренной иглой и отверстием.

Примечание - Клапан следует использовать во время продувки, повышения и понижения давления в бомбе с кислородом.

А.1.1.8 Манометр

Манометр индикаторного или записывающего типа для снятия показаний не менее 1380 кПа. Можно использовать датчики давления или устройства для цифрового считывания данных при условии точности определения.

А.1.1.8.1 Любая половина интервала шкалы (т. е. 345 кПа) между 690 и 1380 кПа должна быть длиной не менее 25 мм, измеренной по дуге шкалы. Цена деления должна быть 35 кПа или меньше. Точность должна быть 1 % или менее всего интервала шкалы. Можно использовать другие равноценные метрические манометры.

А.1.1.8.2 Манометр может быть соединен с бомбой непосредственно или гибкой металлической или газостойкой полимерной трубкой, снабженной металлической оболочкой с сопротивлением давлению, удовлетворяющим вышеуказанные условия. Общий объем гибкой трубки, соединений и ствола с наливным стержнем на месте не должен превышать 30 см 3 .

Примечание - Предостережение. Заказывая оборудование для этого испытания, необходимо требовать от изготовителя, чтобы манометр и игольчатый клапан были пригодны для использования с кислородом.

А.1.1.9 Баня для окисления

Жидкостная баня вместимостью не менее 18 дм 3 для одной бомбы и дополнительные 8 дм 3 для каждой дополнительной бомбы в составных комплектах. Размеры бани должны обеспечивать глубину жидкости в бане не менее 290 мм.

Все новые бани должны быть снабжены самовозвращающимся в исходное положение устройством для гарантии того, что обогреватель выключен, если уровень жидкости в бане падает ниже безопасного.

При использовании бань без этого устройства необходимо иметь ретросмонтированное оборудование для обеспечения безопасности эксплуатации.

А.1.1.9.1 Верхняя часть бани должна быть с отверстиями соответствующего диаметра, чтобы разместить бомбу и плотно установить закрывающую пластину, прикрепленную к стволу бомбы. Баня должна быть оснащена термометром, хорошо закрепленным в таком положении, чтобы отметка 97 ° С на термометре была выше крышки бани.

Если для управления температурой бани применяется термометр, то должна быть предусмотрена такая позиция кармана термометра, чтобы метка термометра 97 ° С находилась выше крышки бани.

Для других сенсорных температурных устройств необходимо обеспечивать контроль температуры.

А.1.1.9.2 Находясь на месте, верхняя сторона крышки бомбы должна быть погружена не менее чем на 50 мм от поверхности жидкости в бане.

А.1.1.9.3 Необходимы дополнительные крышки, чтобы закрывать отверстия, когда бомбы находятся вне бани.

Баня должна быть оснащена конденсатором и источником тепла для поддержания интенсивного кипения жидкости в бане.

При использовании жидкостной среды, отличающейся от воды, следует применять соответствующий механический смеситель, чтобы поддерживать однородность (равномерность) жидкостной бани при (100 ± 2) °С.

Примечание - Применяемые электрические агрегаты (блоки, узлы) могут иметь теплоемкости, скорости нагрева и характеристики теплопередачи, отличающиеся от жидкостной бани. Агрегат электронагрева можно использовать вместо жидкостной бани до тех пор, пока наглядно видно, что скорость нагревания образца и температура образца такие же, как при применении жидкостной бани.

А.1.1.10 Термометр с диапазоном измерения 95 - 103 °С, удовлетворяющий требованиям, указанным в Спецификации Е.1 или Спецификациях на термометры IP .

Вместо термометров, указанных в

Е1 Спецификация на термометры ASTM

IP 138 Метод определения окислительной стабильности авиационного бензина

ASTM Bulletin , Нефть и нефтепродукты

с. 99 - 102, часть IV )

Ключевые слова: точка перегиба, бензин, индукционный период, стабильность к окислению

Длительность индукционного периода бензина

Высокая химическая стабильность - основной показатель качественного бензина . Химической стабильностью называется то, как топливо противостоит химическим изменениям при транспортировке, хранении и использовании. На нее влияет состав, его неуглеводородные примеси, наличие различных добавленных присадок для антиокисления.

До того момента, пока его зальют в бак автомашины, он проходит долгий путь транспортировки по нефтебазам, а ранее от завода, где его производят. На всем пути бензин испытывает окисление в результате смешения с кислородом. Основная часть продуктов, образующихся при этом, остается растворенной в самом топливе, но некоторые выпадают как осадок. Причем в резервуарах может накапливаться некоторое число отстоя и осадка, и это тоже ускоряет окислительный процесс. На него влияет также каталитическое воздействие от металла, к примеру, меди.

Чтобы предупредить неприятный процесс, используются специальные антиокислители, их еще называют ингибиторами. Под воздействием молекулярного кислорода эти процессы приостанавливаются на какое-то время. Поэтому современный бензин обычно содержит такие присадки в небольших количествах - примерно от тысячной до десятых доли процента.

Антиокислитель тормозит процесс на определенный момент, это время называют индукционным периодом, после чего воздействие кислорода вновь возрастает. Обычный период составляет от 600 до 1300 минут. При ускоренном окислении для определения индукционного периода образуются смолы, и их количество указывает на стабильность топлива при долгом хранении.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png