Большинство параметров для изготовления акустического оформления может быть измерено или рассчитано в домашних условиях с помощью не особо сложных измерительных приборов и компьютера или калькулятора, умеющего извлекать корни и возводить в степень. Автор этого "труда" не претендует на особые знания в области теории, а все тут изложенное является компиляцией из различных источников - как иностранных, так и российских.

Самыми основными параметрами, по которым можно рассчитать и изготовить акустическое оформление (проще говоря - ящик) являются:

  • Резонансная частота динамика Fs (Герц)
  • Эквивалентный объем Vas (литров или кубических футов)
  • Полная добротность Qts
  • Сопротивление постоянному току Re (Ом)

Для более серьезного подхода понадобится еще знать:

  • Механическую добротность Qms
  • Электрическую добротность Qes
  • Площадь диффузора Sd (м2) или его диаметр Dia (см)
  • Чувствительность SPL (dB)
  • Индуктивность Le (Генри)
  • Импеданс Z (Ом)
  • Пиковую мощность Pe (Ватт)
  • Массу подвижной системы Mms (г)
  • Относительную жесткость Cms (метров/ньютон)
  • Механическое сопротивление Rms (кг/сек)
  • Двигательную мощность BL

Измерение Re, Fs, Fc, Qes, Qms, Qts, Qtc, Vas, Cms, Sd.

Для проведения измерений этих параметров вам понадобится следующее оборудование: 1. Вольтметр
2. Генератор сигналов звуковой частоты
3. Частотомер
4. Мощный (не менее 5 ватт) резистор сопротивлением 1000 ом
5. Точный (+- 1%) резистор сопротивлением 10 ом
6. Провода, зажимы и прочая дребедень для соединения всего этого в единую схему.

Конечно, в этом списке возможны изменения. Например, большинство генераторов имеют собственную шкалу частоты и частотомер не является в таком случае необходимостью. Вместо генератора можно также использовать звуковую плату компьютера и соответствующее программное обеспечение, способное генерировать синусоидальные сигналы от 0 до 200Гц требуемой мощности.

Калибровка: Для начала необходимо откалибровать вольтметр. Для этого вместо динамика подсоединяется сопротивление 10 Ом и подбором напряжения, выдаваемого генератором, надо добиться напряжения 0.01 вольта. Если резистор другого номинала, то напряжение должно соответствовать 1/1000 номинала сопротивления в омах. Например для калибровочного сопротивления 4 ома напряжение должно быть 0.004 вольта. Запомните! После калибровки регулировать выходное напряжение генератора НЕЛЬЗЯ до окончания всех измерений.

Нахождение Re Теперь, подсоединив вместо калибровочного сопротивления динамик и выставив на генераторе частоту, близкую к 0 герц, мы можем определить его сопротивление постоянному току Re. Им будет являться показание вольтметра, умноженное на 1000. Впрочем, Re можно замерить и непосредственно омметром.

Нахождение Fs и Rmax Динамик при этом и всех последующих измерениях должен находиться в свободном пространстве. Резонансная частота динамика находится по пику его импеданса (Z-характеристике). Для ее нахождения плавно изменяйте частоту генератора и смотрите на показания вольтметра. Та частота, на которой напряжение на вольтметре будет максимальным (дальнейшее изменение частоты будет приводить к падению напряжения) и будет являться частотой основного резонанса для этого динамика. Для динамиков диаметром больше 16см эта частота должна лежать ниже 100Гц. Не забудьте записать не только частоту, но и показания вольтметра. Умноженные на 1000, они дадут сопротивление динамика на резонансной частоте Rmax, необходимое для расчета других параметров.

Эти параметры находятся по следующим формулам:

Как видно, это последовательное нахождение дополнительных параметров Ro, Rx и измерение неизвестных нам ранее частот F 1 и F 2 . Это частоты, при которых сопротивление динамика равно Rx. Поскольку Rx всегда меньше Rmax, то и частот будет две - одна несколько меньше Fs, а другая несколько больше. Вы можете проверить правильность своих измерений следующей формулой:

Если расчетный результат отличается от найденного ранее больше, чем на 1 герц, то нужно повторить все сначала и более аккуратно. Итак, мы нашли и рассчитали несколько основных параметров и можем на их основании делать некоторые выводы:
1. Если резонансная частота динамика выше 50Гц, то он имеет право претендовать на работу в лучшем случае как мидбас. О сабвуфере на таком динамике можно сразу забыть.
2. Если резонансная частота динамика выше 100Гц, то это вообще не низкочастотник. Можете использовать его для воспроизведения средних частот в трехполосных системах.
3. Если соотношение Fs/Qts у динамика составляет менее 50-ти, то этот динамик предназначен для работы исключительно в закрытых ящиках. Если больше 100 - исключительно для работы с фазоинвертором или в бандпассах. Если же значение находится в промежутке между 50 и 100, то тут нужно внимательно смотреть и на другие параметры - к какому типу акустического оформления динамик тяготеет. Лучше всего для этого использовать специальные компьютерные программы, способные смоделировать в графическом виде акустическую отдачу такого динамика в разном акустическом оформлении. Правда при этом не обойтись без других, не менее важных параметров - Vas, Sd, Cms и L .

Нахождение Sd Это так называемая эффективная излучающая поверхность диффузора. Для самых низких частот (в зоне поршневого действия) она совпадает с конструктивной и равна:

Радиусом R в данном случае будет являться половина расстояния от середины ширины резинового подвеса одной стороны до середины резинового подвеса противоположной. Это связано с тем, что половина ширины резинового подвеса также является излучающей поверхностью. Обратите внимание что единица измерения этой площади - квадратные метры. Соответственно и радиус нужно в нее подставлять в метрах.

Нахождение индуктивности катушки динамика L Для этого нужны результаты одного из отсчетов из самого первого теста. Понадобится импеданс (полное сопротивление) звуковой катушки на частоте около 1000Гц. Поскольку реактивная составляющая (XL) отстоит от активной Re на угол 900, то можно воспользоваться теоремой Пифагора:

Поскольку Z (импеданс катушки на определенной частоте) и Re (сопротивление катушки по постоянному току) известны, то формула преобразуется к:

Найдя реактивное сопротивление XL на частоте F можно рассчитаь и саму индуктивность по формуле:

Измерения Vas Есть несколько способов измерения эквивалентного объема, но в домашних условиях проще использовать два: метод "добавочной массы" и метод "добавочного объема". Первый из них требует из материалов несколько грузиков известного веса. Можно использовать набор грузиков от аптечных весов или воспользоваться старыми медными монетками 1,2,3 и 5 копеек, поскольку вес такой монетки в граммах соответствует номиналу. Второй метод требует наличия герметичного ящика заранее известного объема с соответствующим отверстием под динамик.

Нахождение Vas методом добавочной массы Для начала нужно равномерно нагрузить диффузор грузиками и вновь измерить его резонансную частоту, записав ее как F"s. Она должна быть ниже, чем Fs. Лучше если новая резонансная частота будет меньше на 30%-50%. Масса грузиков берется приблизительно 10 граммов на каждый дюйм диаметра диффузора. Т.е. для 12" головки нужен груз массой около 120 граммов. Затем необходимо рассчитать Cms на основе полученных результатов по формуле:

где М - масса добавленных грузиков в килограммах. Исходя из полученных результатов Vas (м3) рассчитывается по формуле:

Нахождение Vas методом добавочного объема Нужно герметично закрепить динамик в измерительном ящике. Лучше всего это сделать магнитом наружу, поскольку динамику все равно, с какой стороны у него объем, а вам будет проще подключать провода. Да и лишних отверстий при этом меньше. Объем ящика обозначен как Vb . Затем нужно произвести измерения (резонансной частоты динамика в закрытом ящике) и, соответственно, вычислить Qmc,Qec и Qtc . Методика измерения полностью аналогична описанной выше. Затем находится эквивалентный объем по формуле:

Практически с теми же результатами можно использовать и более простую формулу:

Полученных в результате всех этих измерений данных достаточно для дальнейшего расчета акустического оформления низкочастотного звена достаточно высокого класса. А вот как оно рассчитывается - это уже совсем другая история...

Учтите, что приведенная выше методика действенна только для измерения параметров динамиков с резонансными частотами ниже 100Гц, на более высоких частотах погрешность возрастает.

В последнее время стало слышно очень много вопросов про динамики и сабвуферы. Подавляющее большинство ответов можно получить на первых трех страницах любой книги, написанной профессионалами. Материал адресован в первую очередь начинающим, ленивым;) и сельским самодельщикам, подготовлен на основе книг И.А.Алдощиной, В.К.Иоффе, отчасти Эфрусси, журнальных публикаций в Wireless Worrld , АМ и (немного) личного опыта. HЕ использовалась информация из Интернета и ФИДОнета. Материал никоим образом не претендует на полноту освещения проблемы, а представляет собой попытку объяснить на пальцах азы акустики.

Чаще всего вопрос звучит примерно так: "нашел динамик, что с ним делать?", или "Товарищч, а говорят такие сабвуферы бывают›". Здесь мы рассмотрим только один вариант решения этой проблемы: По имеющемуся динамику сделать ящик, с оптимальными параметрами на HЧ, насколько это возможно. Этот вариант сильно отличается от задачи заводского конструктора-натянуть нижнюю частоту системы до необходимой по ТУ величины

[Q] Hашел по случаю большой динамик без опознавательных знаков. Как узнать, можно ли сделать из него сабвуфер?

[A] Hужно измерить его T/S параметры. Hа основании этих данных принимать решение о виде HЧ оформления.

[Q] Что такое T/S параметры?

[A] Минимальный набор параметров для расчета HЧ оформления, предложенный Тиллем и Смоллом.

  • Fs -резонансная частота динамика без оформления
  • Qts- полная добротность динамика
  • Vas- эквивалентный объем динамика.

[Q] Как измерить T/S параметры?

[A] Для этого нужно собрать схему из генератора, вольтметра, резистора и исследуемого динамика. Динамик подключается к выходу генератора с выходным напряжением несколько вольт через резистор сопротивлением порядка 1 кОм.

1. Снимаем V(F)=АЧХ сопротивления динамика в области резонанса. Динамик должен во время этого измерения находиться в свободном пространстве(вдали от отражающих поверхностей) . Hаходим сопротивление динамика на постянном токе (пригодится), записываем частоту резонанса в воздухе Fs (это та частота, на которой показания вольтметра максимальны:) , показания вольтметра Uo на минимальной частоте (ну к примеру 10 Гц) и Um на частоте резонанса Fs.

2. Hаходим частоты F1 и F2, в которых кривая V(F) пересекается с уровнем V=SQRT(Vo*Vm) .

3. Hаходим Qts=SQRT(F1*F2)*SQRT(Uo/Um) / (F2-F1) это полная добротность динамика, можно сказать, важнейшая величина.

4. Для нахождения Vas нужно взять небольшой закрытый яшик объема Vc, с отверстием, немного меньшим диаметра диффузора. Плотно прислонить динамик к отверстию и повторить измерения. От этих измерений понадобится резонансная частота динамика в корпусе Fc. Hаходим Vas=Vc*((Fc/Fs)^2-1) .

Эта методика написана в Аудио Магазине 4 за 99 год. Я ее не проверял.. Есть и другие, когда измеряются механические параметры головки, масса, гибкость и т.п.

[Q] У меня теперь есть параметры динамика, что с ними делать?

[A] Каждый динамик при проектировании затачивается под определенный вид акустического оформления. Чтобы узнать, подо что именно, посмотрим на добротность.

  • Qts > 1,2 это головки для открытых ящиков, оптимально 2,4
  • Qts < 0.8-1.0 - головки для закрытых ящиков, оптимально 0,7
  • Qts<0.6 - для фазоинверторов, оптимум - 0,39
  • Qts<0.4 - для рупоров

Правильнее будет сортировать головки не по добротности, а по величине Fs/Qts. Приведу по памяти, неохота формулы просчитывать.

  • Fs/Qts >30 (?) экран и открытый корпус
  • Fs/Qts >50 закрытый корпус
  • Fs/Qts >85 фазоинверторы
  • Fs/Qts >105 Бандпассы (полосовые резонаторы)

Упругость, мясистость, сухость и др. подобные характеристики звука, издаваемого басовой колонкой, во многом определяются переходной характеристикой системы, образованной динамиком, нч оформлением и окружающей средой. Чтобы в этой системе не было выброса на импульсной характеристике, ее добротность должна быть меньше 0,7 для систем с излучением одной стороной динамика (закрытые и фазоинверторы) и 1,93 для двухсторонних систем (оформление типа экран и открытый ящик)

[A] Открытые ящики и экраны -простейший тип оформления. Достоинства: простота расчета, отсутствие повышения резонансной частоты (от размеров экрана зависит только вид частотной характеристики), почти неизменная добротность. Недостатки: большой размер передней панели. Достаточно грамотные и простые расчеты этого вида оформления можно найти в В.К. Иоффе, М.В.Лизунков. Бытовые акустические системы, М., Радио и связь. 1984. Да и в старых Радио наверняка есть примитивные радиолюбительские расчеты.

[A] Оформление "закрытый ящик" бывает двух типов, бесконечный экран и компрессионный подвес. Попадание в тот или иной разряд зависит от соотношения гибкостей подвеса динамика и воздуха в ящике, обозначается альфа (кстати говоря, первую можно померять, а вторую посчитать и изменить с помощью заполнения). Для бесконечного экрана соотношение гибкостей меньше 3, для компрессионного подвеса больше 3-4. Можно в первом приближении считать что головки с бОльшей добротностью заточены под бесконечный экран, с меньшей-под компрессионный подвес. Для наперед взятого динамика закрытый корпус типа бесконечный экран имеет бОльший объем, чем компрессионный ящик. (Вообще говоря, когда есть динамик, то оптимальный корпус под него имеет однозначно определенный объем. Ошибки, возникшие при измерении параметров и расчетах, можно в небольших пределах поправить с помощью заполнения). Динамики для закрытых корпусов имеют мощные магниты и мягкие подвесы в отличие от головок для открытых ящиков. Формула для резонансной частоты динамика в оформлении объемом V Fс=Fs*SQRT(1+Vas/V) ,а приближенная формула, связывающая резонансные частоты и добротности головки в корпусе (индекс "с") и в открытом пространстве (индекс "s") Fc/Qtc=Fs/Qts

Другими словами, имеется возможность реализовать требуемую добротность акустической системы единственным способом, а именно выбором объема закрытого ящика. Какую добротность выбрать? Люди, которые не слышали звучания натуральных музыкальных инструментов, обычно выбирают колонки с добротностью более1,0. У колонок с такой добротностью (=1.0) наименьшая неравномерность частотной характеристики в области низших частот(а при чем здесь звук?), достигнутая ценой небольшого выброса на переходной характеристике. Максимально гладкая АЧХ получается при Q=0.7, а полностью апериодичная импульсная характеристика при Q=0.5. Hомограммы для расчетов можно взять в вышеприведенной книге.

[Q] В статьях про колонки часто встречаются слова типа "апроксимация по Чебышеву, Баттерворту " и т.п. Какое это имеет отношение к колонкам?

[A] Акустическая система представляет собой фильтр верхних частот. Фильтр может быть описан передаточной характеристикой. Передаточную характеристику всегда можно подогнать под известную функцию. В теории фильтров используют несколько типов степенных функций, названных по имени математиков, первыми обсосавшими ту или иную функцию. Функция определяется порядком(максимальным показателем степени, т.е. H(s)=a*S^2/(b2*S^2+b1*S+b0) имеет второй порядок) и набором коэффициентов a и b (от этих коэффициентов можно потом перейти к значениям реальных элементов электрического фильтра, или электромеханическим параметрам.) Далее, когда речь будет идти об аппроксимации передаточной характеристики полиномом Баттерворта или Чебышева или еще чем-то другим, это надо понимать так, что сочетание свойств динамика и корпуса (или емкостей и индуктивностей в электрическом фильтре) получилось таким, что с наибольшей точностью частотную и фазовую характеристики можно подогнать под тот или иной полином. Наиболее гладкой частотная характеристика получается, если ее можно аппроксимировать полиномом Баттерворта. Чебышевская аппроксимация характеризуется волнообразой частотной характеристикой, и бОльшей протяженностью рабочего участка (по Госту до -14 дБ) в область низших частот.

[Q] Какой вид аппроксимации выбрать для фазоинвертора?

[A] Итак перед постройкой простого фазоинвертора нужно знать объем ящика и частоту настройки фазоинвертора(трубы, отверстия, пассивного радиатора). Если в качестве критерия выбрать наиболее гладкую АЧХ(а это не единственно возможный критерий), то получится следующая табличка А) Qts < 0,3 -наиболее гладкой будет кривая квазитретьего порядка Б) Qts = 0,4- лучше описывается баттервортовскими кривыми В) Qts> 0,5- придется допустить волны на АЧХ, по Чебышеву. В случае А) фазоинвертор настраивается на 40-80% выше частоты резонанса В случае Б)-на частоту резонанса, В случае В) ниже частоты резонанса. Кроме того в этих случаях будет и различный объем корпуса.. Для того, чтобы найти точные частоты настройки, надо взять исходные формулы, достаточно громоздкие для того, чтобы приводить их здесь. Поэтому отсылаю интересующихся в АудиоМагазин за 1999 год, после этого ликбеза там уже можно будет разобраться, или в книги Алдошиной. И даже статьи Эфрусси в Радио за 69 год сгодятся.

Заключение

Если после прочтения всего этого у Вас еще осталось желание что-то склепать самому, то можно взять в Интернете какую-нибудь программку типа и рассчитать все это самому, памятуя о том, что из Г.. конфетку не сделать. Hе следует увлекаться снижением частоты среза, ни в коем случае не нужно пытаться скомпенсировать спад АЧХ усилителем. АЧХ может чуть чуть и выровняется, а вот звук обогатится массой гармоник и субгармоник. Напротив, лучшие результаты, в смысле приятности для уха, можно достичь принудительно загубив на входе УМ самые низшие частоты, т.е. частоты ниже частоты среза HЧ колонки. Еще одно замечание, касающееся фазоинверторов, ошибка в настройке частоты резонанса фазоинвертора в 20% приводит к всплеску или спаду АЧХ на 3 дБ.

Да, чуть не забыл сказать про сабвуферы, которые на самом деле полосовые резонаторы. Добротность динамиков для них должна быть еще ниже. Простейший бандпасс тоже поддается расчету, но на этом моя любезность заканчивается.

«Параметры Тиля - Смолла» - это набор электроакустических параметров, который определяет поведение динамической головки (динамика) в области низких частот. Эти параметры публикуются в спецификациях производителями как справочные для производителей акустических систем. Большинство параметров определяются только на резонансной частоте динамика, но в общем применимы во всем диапазоне частот, в котором динамик работает в поршневом режиме.

Fs - Резонансная частота динамической головки.
Qes - Электрическая добротность на частоте Fs.
Qms - Механическая добротность на частоте Fs.
Qts - Полная добротность головки на частоте Fs.

Рассмотрим каждый параметр по отдельности:

Fs - Резонансная частота динамической головки.

fs: Driver free air resonance.
fs: основной резонанс динамической головки (так же еще называют резонанс в открытом воздухе -без оформления)

Можно сказать что это условия при которых все движущиеся части динамической системы синхронизированы или входят в резонанс. Резонанс довольно сложно объяснить, проще понять это явление если попросту сказать что очень тяжело получить с помощью динамика частоту ниже частоты его основного резонанса.

К примеру грубо говоря динамик с частотой основного резонанса (fs: Driver free air resonance) = 60 Hz (Гц), не будет воспроизводить частоту в 35 Hz (Гц) очень хорошо.

Динамик же с частотой основного резонанса (fs: Driver free air resonance) = 32 Hz (Гц), будет воспроизводить частоту в 35 Hz (Гц) довольно уверенно, если ваше акустическое оформление будет настроено на воспроизведение столь низких частот. Эти два объяснения очень хорошо подходят для выбора динамика для оформления ФИ (фазинвертер), ЗЯ (Закрытый Ящик) и band-pass (банд пасс). В случае рупорного сабвуфера этот параметр не столь критичен, так как там динамик скорее используется как поршень, а частоту создает само оформление сабвуфера в виде рупора. Резонансная частота – это частота резонанса динамика без какого-либо акустического оформления. Она так и измеряется – динамик подвешивают в воздухе на наибольшем расстоянии от окружающих предметов, так что теперь его резонанс будет зависеть только от его собственных характеристик – массы подвижной системы и твердости подвески.Существует мысль, что чем ниже резонансная частота, тем лучше выйдет сабвуфер. Это верно только частично, для некоторых конструкций лишняя низкая частота резонанса – препятствие. Для ориентира: низкая – это 20 – 25 Гц. Ниже 20 Гц – редкость. Выше 40 Гц – считается высокой, для сабвуфера.

Qms - Механическая добротность на частоте Fs

Qms: Driver mechanical Quality
Qms: Механическая добротность динамика

Qms - механическая добротность динамика, дает представление о всех механических параметрах динамика вместе. Это выражение контроля создаваемого жесткостью подвеса.

Qts - Полная добротность головки на частоте Fs

Qts: Driver total Quality.
Qts: Общая добротность динамика

Иногда в этом параметре опускается буква Q, так как Это сокращение слова (качество - добротность). Итак Qts это общая добротность динамика, которая включает в себя электрическую и механическую добротность. Qts - дает нам понять, насколько сильна моторная (магнитная) система динамика. Динамики с малой общей добротностью системы (около 0,20(будут иметь большой магнит и смогут двигать диффузор динамика с большой силой. Это делается для тугих (жестких) динамиков. Динамик с Qts = 0,45 будут иметь меньший магнит и соответственно меньшую силу для движения диффузора. Таким образом низкое значение Qts дает сильный (жесткий, плотный) и острый звук, но с малым весом или низким басом и большим Qts получается протяжный и сильный звук который дает вам очень много низкочастотного давления. Остерегайтесь динамиков с большим Qts, более 0,6. Для нормальной работы таких динамиков вам потребуются огромные акустические оформления (короба), так как с нормальными (реально разумными) размерами акустического оформления вы не получите от этих динамиков много басовой составляющей. Такие динамики лучше использовать в задней полке вашего авто, где они получат много свободного пространства за своей спиной. Qts (общая добротность динамика) состоит из електрической добротно Q (Qes) и механической добротности Q (Qms)

Qms рассчитывается как

Fs sqrt(Rc)
Qms = ----------------
f2 - f1
Динамик с большой мехнической добротностью Qms может играть более открыто, чище и иметь больший динамический диапазон. Потому что такие динамики будут иметь меньшие потери. Резиновый круговой подвес более гибкий, бумажный подвес, который является частью дииффузора более конструктивен, они имеют больший воздушный поток и обычно соответственно большую чувствительность. Таким образом механическая добротность очень хороший индикатор енергетического запаса динамика.

Qts это всего лишь произведение Qes и Qms и понимания что означают эти величины, очень важно при конструировании акустических систем.
Qts Vas и fs все что нужно для вычисления размеры вашего будущего акустического оформления (короба), со временем когда вы перейдете на более профессиональный уровень конструирования, такие величины как Qes и Qms станут для вас необходим условиям для последующей работы.

Добротность – не качество изделия, а соотношение упругих и грузлых сил, которые существуют в подвижной системе динамика вблизи частоты резонанса. Подвижная система динамика во много почему то же что и подвеска автомобиля, где есть пружина и амортизатор. Пружина создает упругие силы, то есть накапливает и отдает энергию в процессе колебаний, а амортизатор – источник грузлого сопротивления, оно ничего не накапливает, а поглощает и рассеивает в виде тепла. То же происходит при колебаниях диффузора и всего, что к нему прикреплено. Высокое значение добротности значит, что преобладают упругие силы. Это – как автомобиль без амортизаторов. Достаточно наехать на камешек и колесо начнет прыгать, ничем не сдерживаемое. Прыгать на той же резонансной частоте, что свойственная этой колебательной системе. Относительно громкоговорителя это означает выбросы частотной характеристики на частоте резонанса, тем больший, чем выше полная добротность системы.Наивысшая добротность, измеряемая тысячами, – у звука, что в итоге ни на какой частоте, кроме резонансной звучать не желает, благо еще, что этого от него никто и не требует.Популярный метод диагностики подвески машины покачиванием – не что другое как измерение добротности подвески «кустовым» способом. Если теперь привести подвеску в порядок, то есть прицепить параллельно пружине амортизатор, накопленная при сжатии пружины энергия уже не вся вернется назад, а частично будет затеряна амортизатором. Это – снижение добротности системы. Теперь опять вернемся к динамику. Ничего, что мы сюда ходим? Это, говорит что, с пружиной у динамика все, вроде бы, ясно. Это – подвеска диффузора. А амортизатор? Амортизаторов – целых два, что работают параллельно. Полная добротность динамика состоит из двух: механической и электрической.Механическая добротность определяется главным образом выбором материала подвеса, причем в основном – шайбы, которая центрирует, а не внешнего гофра, как иногда думают. Больших потерь здесь обычно не бывает и взнос механической добротности в полной мере не превышает 10 – 15%. Основной взнос принадлежит электрической добротности.Самый твердый амортизатор, который работает в колебательной системе динамика, – это ансамбль из звуковой катушки и магниту. Будучи по своей природе электромотором, он как и годится мотору, может работать как генератор и именно этим и занятый вблизи частоты резонанса, когда скорость и амплитуда перемещения звуковой катушки – максимальны.Двигаясь в магнитном поле, катушка производит ток, а нагрузкой для такого генератора служит исходное сопротивление усилителя, то есть практически – нуль. Выходит такой же электрический тормоз, которым поставляются все электрички. Там тоже при торможении тяговые двигатели вынуждают работать в режиме генераторов, а нагрузка их – батареи тормозных сопротивлений на крыше. Величина производимого тока будет, природнее, тем более, чем сильнее магнитное поле, в котором двигается звуковая катушка. Выходит, что чем больше магнит динамика, тем ниже, при других ровных, его добротность. Но, конечно, поскольку в формировании этой величины принимают участие и длина проведения обмотки, и ширина зазора в магнитной системе, окончательный вывод только на основании размера магниту было бы делать преждевременно. А предыдущий – почему нет?- Базовые понятия – рядом считается полная добротность динамика меньше 0,3 – 0,35; высокой – больше 0,5 – 0,6.

Vas - Эквивалентный объем (объем воздуха (в м?), который, при воздействии на него поршня площадью Sd, обладает гибкостью, равной гибкости подвеса).

Vas: Volume of air equal to the driver compliance.
Vas: Эквивалентный объем динамика

Он дает понятие о том насколько тугой подвес у динамика. Значение дается в литрах или в кубических дюймах. Есть много параметров влияющих на Эквивалентный объем, так что мы не можем сказать что большое значение параметра Vas лучше. На еквивалентный обхем влияет подвес динамика, размер диффузора и даже температура воздуха. Это самый трудно определяемы параметр. Его значимость труднее всего оценить.Большинство современных головок громкоговорителей основано на принципе «акустического подвеса». Концепция акустического подвеса заключается в установке динамика в такой объем воздуха, упругость которого сравнимая с упругостью подвеса динамика. При этом выходит, что в параллель к уже имеющейся в подвеске пружине поставили еще одну. Эквивалентным объем будет при этом такой, при котором новая пружина, которая появилась, равняется по упругости той что была. Величина эквивалентного объема определяется твердостью подвеса и диаметром динамика. Чем мягче подвес, тем более будет величина воздушной подушки, присутствие которой начнет тревожить динамик.То же происходит с изменением диаметра диффузора. Большой диффузор при том же сдвиге будет сильнее сжимать воздух внутри ящика, тем самым испытывая большую соответствующую силу упругости воздушного объема. Именно это обстоятельство чаще всего определяет выбор размера динамика, исходя из имеющегося объема для размещения его акустического оформления. Большие диффузоры создают предпосылки для высокой отдачи сабвуфера, но требуют и больших объемов. У эквивалентного объема интересны семейные связки с резонансной частотой, без осознания которых легко промахнуться. Резонансная частота определяется твердостью подвеса и массой подвижной системы, а эквивалентный объем – диаметром диффузора и той же твердостью.
В итоге возможна такая ситуация: допустимо, есть две динамика одинакового размера и с одинаковой частотой резонанса. Но только в одно из них это значение частоты вышло в результате тяжелого диффузора и жесткой подвески, а в другое – наоборот, легкого диффузора на мягком подвесе. Эквивалентный объем у такой парочки при всем внешнем сходстве может различаться очень существенно, и при установке в тот же ящик результаты будут драматично разными.

Расположение электрического разъема (1) подачи напряжения к топливной
форсунке и разъема (2) на топливной форсунке

ПОРЯДОК ВЫПОЛНЕНИЯ
1. Отсоедините электрический разъем от топливной форсунки первого цилиндра, см.
рис. Расположение электрического разъема (1) подачи напряжения к топливной
форсунке и разъема (2) на топливной форсунке.
2. Подсоедините к контактам разъема (1) контрольный светодиод (см. рис.
Расположение электрического разъема (1) подачи напряжения к топливной форсунке и
разъема (2) на топливной форсунке). При проворачивании коленчатого вала двигателя
стартером светодиод должен мигать.
3. Аналогичным образом проверьте подачу напряжения к остальным топливным
форсункам.

Светодиод не мигает ни на одном из цилиндров

Расположение контактов на электрическом разъеме подачи напряжения к
топливной форсунке

ПОРЯДОК ВЫПОЛНЕНИЯ
1. Подсоедините контрольный светодиод к контакту № 1 электрического разъема для
подачи напряжения к топливной форсунке и массой автомобиля, см. рис. Расположение
контактов на электрическом разъеме подачи напряжения к топливной форсунке.
2. Соедините контакт № 2 электрического разъема с массой автомобиля.
3. Проверните коленчатый вал двигателя стартером. При этом светодиод должен
мигать. В противном случае проверьте всю электрическую цепь питания топливных
форсунок.

Светодиод не мигает только на одном или на нескольких цилиндрах

ПОРЯДОК ВЫПОЛНЕНИЯ
1. Проверьте состояние электрической цепи питания топливных форсунок и определите
и устраните место обрыва электрической цепи или замыкания ее на массу.
2. Проверьте работу блока управления двигателем.

Проверка сопротивления

Места подсоединения омметра для проверки сопротивления топливных
форсунок

ПОРЯДОК ВЫПОЛНЕНИЯ
Последовательно отсоедините электрические разъемы от топливных форсунок и,
используя омметр, проверьте сопротивление топливных форсунок, которое должно
находиться в пределах от 12 до 17 Ом, см. рис. Места подсоединения омметра для
проверки сопротивления топливных форсунок.

Предупреждение
На двигателе, прогретом до нормальной рабочей температуры, сопротивление
топливных форсунок увеличивается на 4-6 Ом.

Если сопротивление топливной форсунки отличается от требуемого, замените
топливную форсунку.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png