Выполнил Бологов Игорь Fтр = μN , где μ – коэффициент трения N – сила реакции опоры Давайте фантазировать! Давайте все по порядку. Когда вы проснетесь, то обнаружите что вы лежите непонятно где, а вся мебель в квартире находится в одном углу. Люстра, подвешенные полки, шторы и все остальные предметы, которые лежали или были подвешены на гвозди, будут валяться на полу, т.к. гвозди держат за счет силы трения. Предположим, что вы быстро привыкли к тому, что нет силы трения, и добрались до ванны; умылись и пошли завтракать. В кухне вы столкнётесь с ещё одной проблемой: вы не сможете поесть, т. к. еда будет выскакивать у вас из рук как мыло, потому что продукты в руках держаться тоже из-за силы трения. После многократных попыток удержать еду в руках, вы устанете и захотите сесть на стул, но вы сразу съедите вниз, а стул уедет в сторону.. Если вы находитесь около окна, то вам наверняка захочется посмотреть, что происходит на улице. И вы увидите то, что изображено на рисунке снизу. А это люди смешным образом будут ходить, контролируя каждый свой шаг, чтобы не упасть. Не будет окон штор, которые держались на петлях или гвоздях. Мебель будет передвигаться по комнатам из-за легкого дуновения даже самого слабого ветерка, а машины, припаркованные около домов, разваляться. Невозможно было бы дождаться или сесть в автобус, потому что изза отсутствия силы трения автобус не сможет остановиться на остановке. На скейтборде можно было кататься безостановочно и до одурения! Правда, не всегда удачно! Те, кто танцевал, не смогут остановиться, не ударив себе что-нибудь. Доплыть до берега будет невозможно. Невозможно будет играть в мяч, потому что он будет сам по себе, а ноги – сами по себе. Газонокосилка будет скользить по траве, как по катку, не срезая травы. Машины ездили бы по бездорожью, как по самым лучшим шоссе. Поезда будут ездить без остановки, сталкиваясь, сходить с рельсов и скользить дальше. НЕБОЛЬШИЕ ВОЛНЫ ПРЕВРАЩАЛИСЬ БЫ В БОЛЬШИЕ ЦУНАМИ И НИКОГДА НЕ ПРЕКРАЩАЛИСЬ. ПРОСТОЙ ЛЕГКИЙ ВЕТЕРОК СТАНОВИЛСЯ БЫ СМЕРЧЕМ ИЛИ БУРЕЙ И ТОЖЕ НИКОГДА НЕ ПРЕКРАЩАЛСЯ. С гор сползли бы все ледник, камни, земля. Остались бы только лысые горы. Выполнила Лебеденко Валерия Кому из вас не случалось помечтать... Тем более на уроках, тем более, когда слушаешь крайне неинтересную тебе, тему... Как, казалось бы, просто и легко мир обошелся бы без силы трения и архимедовой силы, Пушкина и Гоголя и др... Но не получалось ли у вас так, что подхваченные Мечтой вы попадали в страну «Невыученных Уроков» - с поездами, несущимися навстречу друг другу по одному полотну, и половинчатыми землекопами? Я решила пойти немного дальше пустых мечтаний. С помощью своих фантазий и размышлений я постаралась понять силу трения и то, за что она отвечает. Жить в мире, где каждому нашему движению препятствует трение, нелегко, но если трение исчезнет, нам придётся гораздо хуже. В фантастическом мире без трения возможны происшествия более удивительные, чем те, что описаны в сказке К.Чуковского «Мойдодыр». Шевельнётся спящий человек – и одеяло, не удерживаемое трением покоя, сползёт и отправится путешествовать по комнате; заденет сапоги – и сапоги поползут куда придётся. По дороге сапоги встретят много препятствий и, наконец, все сведется к тому, что стол зацепит по дороге стулья и все вещи соберутся где-нибудь в одном месте, ведь пол не бывает идеально горизонтальным. В мире без трения жизнь человека превращается в упорную погоню за расползающимися и разбегающимися вещами. При отсутствии трения даже самый малейший толчок будет вызывать безостановочное движение по инерции всех предметов. Но сможет ли человек что-либо сделать? Если встать на пол, то как устоять на нём? Полы, тротуары, станут более скользкими, чем самый гладкий лёд. Ходить по полу будет совершенно невозможно. И передвигаться люди смогут, пожалуй, только при помощи каких-то липких или клейких веществ, т.е. им придётся приклеивать себя к полу при каждом шаге, но это будет возможно лишь при условии, что с исчезновением трения и эти вещества не потеряют своей липкости. Сразу же после исчезновения трения люди с ужасом убедятся, что платье на них расползается. Ведь швы держатся исключительно благодаря трению между нитками и тканью. Все пуговицы оторвутся, все узлы развяжутся, гвозди из ботинок выскочат, и ткани начнут расползаться, потому что волоконца в нитках тоже скреплены трением. Всё это может произойти при частичном исчезновении трения. Если же прекратят своё действие все виды трения, то земной шар превратится в клубок мельчайшей пыли, окутанный такой же пыльной атмосферой. Трение мешает людям двигаться и двигать, но без трения мы совсем не могли бы передвигаться и существовать. Трение не только вредно, но и полезно. Трение совершенно необходимо и неизбежно. Оно порождено тем, что мир материален, и каждый предмет двигается только во взаимодействии с другими предметами, а трение является неизбежным следствием этого взаимодействия. Если бы не было силы трения, Не остановились бы мы Ни на мгновение. Вечно летал бы самолет. А вдруг он куда пропадет? На светофоре красный свет Сейчас загорится. Если бы не было силы трения, Пора тормозить. А не тормозится! Не избежали бы мы столкновения. Сила трения важна! Сила трения нужна! Если будет сила трения Избежим мы разрушения. Если б не было силы трения Вся Земля тогда бы, Без сомнения, Стала бы ледяным катком, И вместе с ней Все дома плясали бы весь день. Презентация подготовлена ученицей 7 «А» класса МОУ лиц ей №5 имени Ю.А. Гагарина Шипулиной Варварой Изучением трения ученые занимаются уже пятьсот лет. Первым его исследовал еще Леонардо да Винчи (1452-1519). Важные результаты в этой области были получены французскими учеными Г. Амонтоном (16631705) и Ш. Кулоном (1736-1806). Какую роль играет трение в природе и технике, положительную или отрицательную? На этот вопрос нельзя дать однозначного ответа. Трение может быть как полезным, так и вредным. В первом случае его стараются усилить, во втором - ослабить. Когда человек, делая шаг, отталкивается от земли, подошва ботинка стремится продвинуться назад, в сторону противоположную движению человека. А сила трения, действующая со стороны земли на подошву, направлена против движения подошвы. В этом случае сила трения действует противоположно направлению движения подошвы(но по направлению движения человека). Если трение достаточно для того, чтобы нога не проскальзывала, то нога во время толчка перемещаться не будет. Второй этап ходьбы - отставшая нога выносится вперед и ставится на землю. В этом случае сила трения направлена уже против движения человека. Таким образом, при ходьбе направление силы трения все время меняется. Теперь посмотрим, как работает сила трения при катании на лыжах... Но вот Вы отправляетесь в горы... Если спуск крутой, человек тормозит ногами, и сила трения направлена против скорости человека. При пологом спуске и при подъеме на гору тормозить не надо, и сила трения возникает так же, как и при ходьбе по ровному месту. Хорошо известно, что в критические моменты, чтобы не сорваться со скользкой жерди или подняться по крутой стене, человек не очень-то доверяет обуви, предпочитая действовать босиком. И не зря. Oгромнoe преимущество нашей голой пятки и стопы в том, что они эластичны. Это дает им возможность «вписываться» в шероховатый рельеф, резко увеличивая площадь контакта с твердой поверхностью, а следовательно и сопротивление проскальзыванию. Особый мелкий гофр (волнистость) кожи на человеческой ступне также препятствует проскальзыванию ноги назад. Этот гофр совершенно не изнашивается, а точнее, непрерывно восстанавливается по мере истирания кожи. Американские астронавты члены экипажа «Аполлон-12» Ч. Конрад и А. Бин рассказывали, что по Луне ходить легко, но они часто теряли равновесие, так как даже при легком наклоне вперед можно было упасть. Материалы ходьбы человека определяется силой трения между подошвой обуви и почвой. Поскольку сила тяжести на Луне в шесть раз меньше, чем на Земле, то и сила трения тоже уменьшается в шесть раз, а сила мышц такая же, как и на Земле. Это все равно, что на Земле стать в шесть раз сильнее. Ходьба сразу превратится в прыжки, и устойчивость потеряется. При скоростном спуске на санях и горных лыжах костюмы и снаряжение спортсменов должны быть обтекаемыми, чтобы уменьшить встречное сопрот ивление воздуха. Это достигается путем использования специальных тканей и материалов, а также «продувкой» спортсменов или их манекенов в аэродинамических трубах. В спорте сопротивление набегающего потока воздуха далеко не всегда зло. Вспомним о коварных, захватывающих дух ударах «сухой лист» в футболе или знаменитых крученых подачах в волейболе и теннисе. Все эти виртуозные приемы основаны на сложных аэродинамических эффектах и были бы совершенно невозможны в пустоте. Лыжи и коньки занятие сезонное, да и то лишь в странах с относительно холодн ым климатом. Но катки с искусственным льдом позволяют сейчас проводить многие состязания при любой погоде. Появление пластиков с различными свойствами позволило в одних случаях создать беговые дорожки, футбольные поля и корты с искусственными покрытиями использовать материалы, имеющие не только низкий коэффициент трения, но и рифлёную поверхность. 1. Не подмажешь - не поедешь; 2. Пошло дело как по маслу; 3. Угря в руках не удержишь; 4. Что кругло легко катится; 5. Ловкий человек и на дынной корке не поскользнется; 6. Лыжи скользят по погоде; 7. Из навощенной нити сеть не сплетешь; 8. Колодезная веревка сруб перетирает; 9. Ржавый плуг только на пахате очищается; 10. Нет такого человека, который бы хоть раз не поскользнулся на льду 11. Коси коса пока роса; роса долой и мы домой; 12. Баба с воза - кобыле легче; 13. Все перемелется мука будет; 14. Сухая ложка рот дерет; 15. Не подмажешь - не поедешь; 16. Как корова на льду; 17. Близко - да склизко; 18. Скрипит как несмазанная телега; 19. Оттого телега запела, что давно дегтя не ела; 20. Против шерсти не гладят; 21. Кататься как сыр в масле; 22. Остер шип на подкове, да скоро обивается; 23. Где скрипит - там и мажут; 24. Плуг от работы блестит; 25. Не тертая стрела в бок идет; 26. По льду ходить - подскользнуться; 27. На льду не строятся; 28. Каков нож, так и режет; 29. Три, три, три - будет дырка; 30. Тупой серп руку режет хуже острого; 31. На булате ни написать, ни стереть; 32. Плохое колесо больше плохого скрипит; 33. От работы пила раскалилась до бела; 34. Добрый жернов все смелет, плохой сам смелется; 35. В дорогу идти - пятеро лаптей сплести. Что такое трение? Трение - явление. Враг оно нам или друг? Это знают все вокруг. Если б трение пропало, Что б со всеми нами стало? Мы ходить бы не смогли, Оттолкнувшись от Земли. Если б взяли что-то вдруг. Оно выпало б из рук. Помогает трение Начинать движение Всем машинам, тракторам, Мотоциклам, поездам. . . . Но при том приносит вред И не мало разных бед. В станках, приборах трутся части, И это - главное несчастье. Ну и все автомашины Быстро снашивают шины! И поэтому вопрос Не настолько уж и прост: Тренье - друг наш или враг? Ответ двоякий: так и так. составила ученица 7г класса МОУ лицея №5 Ионе Дарья Существует на свете сила трения. Она имеет большое значение! Есть три вида трения: скольжения, покоя, качения. Все по себе очень важны И в этом мире, конечно нужны. (В. Саяпин) А представьте себе... что дорога стала более скользкой, чем каток; Люди ежесекундно падали бы и не могли подняться. Ведь только трение покоя позволяет нам отталкиваться ногами, шагая вдоль по ровной дороге. Упавшие в воду глыбы вызывали бы волны, которые бушевали бы, не стихая – ведь усмирявшее их раньше внутреннее трение между слоями воды, а также трение о берега и дно исчезли! Огромные волны на морях и океанах, раз образовавшись, никогда не стихали бы. Возникает движение воздуха – ветер. Но при наличии внутреннего трения движение воздуха тормозится, ветер рано или поздно стихает. В мире без трения ветры дули бы с невероятной скоростью… …ползущие без торможения со склонов гор на равнины громадные каменные глыбы... …рассыпающиеся песчаные холмы... Всё, что может двигаться, будет катиться, пока не окажется на самом низком уровне. Трение – это одно из самых полезных явлений на Земле. Без него не было бы даже жизни. Создатель: Коробова Мария Преподаватель: Валлерштейн Галина Георгиевна Сила трения – это сила, возникающая при взаимодействии одного тела с поверхностью другого тела, когда поверхности неподвижны или двигаются относительно друг друга. Например: Сила трения скольжения(Напр.: движение лыж по снегу) Сила трения качения(Напр.: движение колес по асфальту) Сила трения покоя(Напр.: чтобы сдвинуть тело, долго находящееся в одном положении надо напрячься. Сила, удерживающая его на месте, называется силой трения покоя) Итак, мы узнали, что такое сила трения и что она делает. А если бы силы трения не существовало, что было бы с …? Ее бы вообще не было. При попытках сделать нити, все волокна бы расплетались… Нельзя было бы построить самой простой машины. Приводные ремни немедленно соскакивали бы. Без трения автомобиль не только нельзя остановить или повернуть, его вообще нельзя заставить катиться. В мире без трения вращающиеся ведущие колёса автомобиля будут «буксовать», как это часто бывает в зимнее время на обледеневшей дороге. Чтобы колёса катились, необходимо трение их о дорогу. На столе ничего не лежало бы: при малейшем наклоне всё съезжало бы на пол, скользило и катилось по нему, стараясь добраться до самого низкого места. В самом деле, ведь только сила трения покоя удерживает предметы на слегка наклонном гладком столе и не даёт им съезжать под действием силы тяжести. Все узлы немедленно развязывались бы; ведь узлы держатся только благодаря трению одних частей верёвки, шнурка или бечёвки о другие.. ..В мире без трения нельзя было бы ничего толком построить или изготовить: все гвозди выпадали бы из стен, – ведь вбитый гвоздь держится только из-за трения о дерево. Все винты, болты, шурупы вывинчивались бы при малейшем сотрясении – они удерживаются только из-за наличия трения покоя. Из-за неравномерного нагревания Солнцем различных участков поверхности Земли воздух над ними не бывает одинаково плотным. Более плотный воздух из холодных мест перемещается в места более тёплые, вытесняя оттуда нагретый воздух. Возникает ветер. При наличии внутреннего трения (вязкости) движение воздуха тормозится, ветер стихает. В мире без трения ветры дули бы с невероятной скоростью. Реки, текущие с гор, не тормозились бы о берега и дно. Вода в них текла бы всё быстрее и быстрее и, с бешеной силой налетая на излучины берегов, размывала и разрушала бы их. Упавшие в воду глыбы (например, при извержении вулканов) вызывали бы волны, которые бушевали бы, не стихая – ведь усмирявшее их раньше внутреннее трение между слоями воды, а также трение о берега и дно исчезли бы! Огромные волны на морях и океанах никогда не стихали бы. Представьте, что пол стал ещё более скользким, чем каток; вот тогда вы и получите отдалённое представление о ходьбе в мире без трения – она в таком мире почти невозможна. Люди поминутно падали бы и не могли подняться. Ведь только трение (точнее: трение покоя) позволяет нам отталкиваться ногами, шагая вдоль по ровной дороге. Вывод напрашивается сам собой: без силы трения жизнь на Земле была бы невозможна.

Как выглядел бы мир без трения?

А представьте себе... что пол в вашей комнате стал ещё более скользким, чем каток; вот в этом случае вы и получите отдалённое представление о ходьбе в мире без трения - она в таком мире почти невозможна. Люди поминутно падали бы и не могли подняться. Ведь только трение (точнее: трение покоя) позволяет нам отталкиваться ногами, шагая вдоль по ровной дороге.

На столе ничего не лежало бы: при малейшем -наклоне всё съезжало бы на пол, скользило и катилось по нему, стараясь добраться до самого низкого места. В самом деле, ведь только сила трения покоя удерживает предметы на слегка наклонном гладком столе и полу и не даёт им съезжать под действием силы тяжести.

Все узлы немедленно развязывались бы; ведь узлы держатся только благодаря трению одних частей верёвки, шнурка или бечёвки о другие.

Все ткани расползались бы по ниткам, а нитки - в мельчайшие волокна.

Но не только ходить в мире без трения было бы невозможно.

Каким образом, например, мог бы шофёр остановить свою машину? Ведь автомобиль тормозят тем, что прижимают к специальным барабанам, вращающимся вместе с колёсами, тормозные колодки (или ленты). Повернуть машину в мире без трения тоже не удалось бы. Вспомните, что в гололедицу автомобиль не только «идёт юзом», но и не слушается руля. Без трения автомобиль не только нельзя остановить или повернуть, его вообще нельзя заставить катиться. Мотор приводит во вращение задние ведущие колёса автомобиля. Но в мире без трения вращающиеся ведущие колёса автомобиля будут «буксовать», как это часто бывает в зимнее время на обледеневшей дороге. Чтобы колёса катились, необходимо трение их о дорогу.

В мире без трения нельзя было бы ничего толком построить или изготовить: все гвозди выпадали бы из стен, - ведь вбитый гвоздь держится только из-за трения о дерево. Все винты, болты, шурупы вывинчивались бы при малейшем сотрясении - они удерживаются только из-за наличия трения покоя.

Нельзя было бы построить самой простой машины. Приводные ремни, бегущие со шкива на шкив и передающие вращение от моторов к станкам и машинам, немедленно соскакивали бы: ведь именно трение заставляет ремень, надетый на ведущий шкив, двигаться вместе с ним.

И без жидкого трения жизнь на Земле была бы затруднительной. Из-за неравномерного нагревания Солнцем различных участков поверхности Земли воздух над ними не бывает одинаково плотным. Более плотный воздух из холодных мест перемещается в места более тёплые, вытесняя оттуда нагретый воздух. Возникает движение воздуха - ветер. Но при наличии внутреннего трения (вязкости) движение воздуха тормозится, ветер рано или поздно стихает. В мире без трения ветры дули бы с невероятной скоростью.

Реки, текущие с гор, не тормозились бы о берега и дно. Вода в них текла бы всё быстрее и быстрее и, с бешеной силой налетая на излучины берегов, размывала и разрушала бы их. Упавшие в воду глыбы (например, при извержении вулканов) вызывали бы волны, которые бушевали бы, не стихая - ведь усмирявшее их раньше внутреннее трение между слоями воды, а также трение о берега и дно исчезли! Огромные волны на морях и океанах, раз образовавшись, никогда не стихали бы.

Картина мира без трения: ползущие без торможения со склонов гор на равнины громадные каменные глыбы, рассыпающиеся песчаные холмы... Всё, что может двигаться, будет скользить и катиться, пока не окажется на самом низком возможном уровне.

Может быть, одним из полезнейших явлений природы, делающим возможным наше существование, является именно трение?

Уроки 7–8. Всё о силе трения

С трением мы сталкиваемся на каждом шагу, но без трения мы не сделали бы и шага. Невозможно представить себе мир без сил трения. В отсутствие трения многие кратковременные движения продолжались бы бесконечно. Земля сотрясалась бы от непрерывных землетрясений, т.к. тектонические плиты постоянно сталкивались бы между собой. Все ледники сразу же скатились бы с гор, а по поверхности Земли носилась бы пыль от прошлогоднего ветра. Как хорошо, что всё-таки есть на свете сила трения! С другой стороны, трение между деталями машин приводит к их износу и дополнительным расходам. Приблизительные оценки показывают, что научные исследования в трибологии – науки о трении – могли бы сберечь от 2 до 10% национального валового продукта.

Классический закон трения. Два самых главных изобретения человека – колесо и добывание огня – связаны с силой трения. Изобретение колеса позволило значительно уменьшить силу, препятствующую движению, а добывание огня поставило силу трения на службу человеку. Однако до сих пор учёные далеки от полного понимания физических основ силы трения. И вовсе не оттого, что людей с некоторых пор перестало интересовать это явление. Первая формулировка законов трения принадлежит великому Леонардо (1519 г.), который утверждал, что сила трения, возникающая при контакте тела с поверхностью другого тела, пропорциональна силе прижатия, направлена против направления движения и не зависит от площади контакта. Этот закон был заново открыт через 180 лет Г.Амонтоном, а затем уточнён в работах Ш.Кулона (1781 г.). Амонтон и Кулон ввели понятие коэффициента трения как отношения силы трения к нагрузке, придав ему значение физической константы, полностью определяющей силу трения для любой пары контактирующих материалов. До сих пор именно эта формула:

где Fтр – сила трения, N – составляющая силы прижатия, нормальная к поверхности контакта, а – коэффициент трения, – является единственной формулой, которую можно найти в учебниках по физике.

В течение двух столетий экспериментально доказанный закон (1) никто не смог опровергнуть и до сих пор он звучит так, как и 200 лет назад:

1. Сила трения прямо пропорциональна нормальной составляющей силы, сжимающей поверхности скользящих тел, и всегда действует в направлении, противоположном направлению движения.

2. Сила трения не зависит от величины поверхности соприкосновения.

3. Сила трения не зависит от скорости скольжения.

4. Сила трения покоя всегда больше силы трения скольжения.

5. Сила трения зависит только от свойств двух материалов, которые скользят друг по другу.

Потираем руки и проверяем основной закон трения. Сила трения – одна из диссипативных сил. Другими словами, вся работа, расходуемая на её преодоление, переходит в тепло. Значения m, приводимые в инженерных справочниках, позволяют оценивать этот нагрев в проектируемых приборах и устройствах (см. таблицу). Ну а мы попробуем найти количество выделяющейся тепловой энергии, когда, разогреваясь, потираем руки или разогреваем с их помощью охлаждённые участки тела.

Пусть мы сжимаем ладони с силой 0,5 Н, и для трения кожи о кожу составляет 0,5. Тогда сила трения, которую мы преодолеваем при скольжении одной ладони по поверхности другой, будет равна 0,25 Н. Если считать, что, разогреваясь, мы за одну секунду совершаем четыре движения ладони, и каждое из них по 0,1 м, то мощность, расходуемая на преодоление силы трения, составляет 0,1 Вт. За 10 с такого разогрева в области контакта ладоней выделится 1 Дж тепловой энергии. Пусть всё тепло идёт на разогрев участка поверхности кожи площадью 0,01 м 2 и толщиной 0,001 м, который имеет массу около 10 –5 кг и удельную теплоёмкость, близкую к теплоёмкости воды (4 кДж/(кг. °С). Значит, наш разогрев приведёт к нагреву этого участка на 25 °С. Видно, что оценка нагрева получилась явно завышенной. Большая часть тепла от разогрева, конечно, уходит в ткани, расположенные под кожей и разносится по телу с кровотоком, но и оставшейся части тепловой энергии оказывается достаточно, чтобы поднять температуру кожи на несколько градусов.

Тормозной путь. Две машины столкнулись на перекрёстке. Повреждения небольшие, т.к. каждый успел почти полностью затормозить перед аварией. Поэтому и виноватым себя считать никто не хочет. Приехавший инспектор решил, что виноват тот, у кого длина тормозного пути – чёрного следа от колёс – больше. Почему?

Пусть машина выезжала на перекрёсток со скоростью , и её водитель, увидев другую машину, стал тормозить, оставив на дороге след длиной L. Если считать, что к моменту столкновения вся кинетическая энергия автомобиля перешла в работу по преодолению силы трения (в тепло), то где m – масса автомобиля, а g – ускорение свободного падения. Откуда следует, что длина тормозного пути пропорциональна квадрату скорости автомобиля. Значит, тот, кто подъезжал к перекрёстку с большей скоростью, имеет и большую длину тормозного пути. Так, например, для = 0,7 длина тормозного пути 30 м соответствует скорости движения 73 км/ч, что на 13 км/ч больше разрешённой скорости движения по улицам города.

А почему все шины чёрные? Все изготовители шин используют один и тот же процесс – вулканизацию жидкой резины, при котором одной из добавок служит угольная пудра. В результате длинные молекулы жидкой резины сшиваются между собой, что превращает её в эластичный и прочный материал. Так как частички угля чёрные и их относительно много (около 25% по весу), то и резина становится чёрной. Чем больше добавлять угольной пудры, состоящей практически из одного углерода, тем более жёсткой, прочной и менее прилипчивой будет резина.

Как нажимать на газ и тормоз, чтобы быстрее разогнаться и остановиться? Некоторые водители, увидев, что на светофоре зажёгся зелёный свет, вдавливают педаль газа до самого пола, пытаясь как можно быстрее набрать максимальную скорость. Свидетели такого старта слышат свист проскальзывающих относительно дороги шин. Со стороны это выглядит, действительно, очень впечатляюще. Но как на самом деле? Неужели, для того чтобы машина приобрела наибольшее ускорение, надо заставлять колёса скользить по дорожному покрытию? Конечно, нет.

Известно, что движущей силой автомобиля служит сила трения его колёс о дорожное покрытие. Если резко нажать на педаль газа, вызвав проскальзывание шин относительно асфальта, то максимальное ускорение будет пропорционально силе трения скольжения, которая всегда меньше максимальной силы трения покоя. Поэтому быстрее ускоряются не те, кто сжигает резину покрышек, а те, кто использует силу трения покоя (т.е. не допускает скольжения) в том диапазоне, где она превышает силу трения скольжения.

Резкое торможение, как и ускорение, может привести к скольжению колёс по дорожному покрытию, а значит, к уменьшению силы, тормозящей автомобиль. Ведь тормозящей силой является тоже сила трения. Поэтому, нажав очень резко на педаль газа и допустив проскальзывание, мы увеличиваем тормозной путь. Чтобы минимизировать тормозной путь, в современных автомобилях устанавливают систему ABS (Antilock Brake System), которая, препятствуя скольжению колёс по дорожному покрытию, трансформирует резкое нажатие на тормоз в последовательность нескольких торможений. Эффективность ABS-торможения особенно высока на мокрых дорогах, когда максимальная сила трения покоя может в несколько раз превышать силу трения скольжения.

Зависимость силы трения, действующей на тело, от силы, которая может привести или приводит к движению тела для сухого и мокрого дорожного покрытия

Для чего нужен рисунок на шинах автомобиля? Если машина въезжает в лужу, а вода не успевает выскочить из-под колеса, то сцепление с дорогой теряется, и колесо может вращаться вокруг оси, не испытывая трения. В этом случае машина теряет движущую силу и становится неуправляемой. Вот почему на покрышках автомобильных шин находятся канавки, помогающие воде выбираться из-под колеса, что помогает резине шин даже в лужах быстро находить контакт с покрытием дороги. Зимой большинство водителей «обувают» свои машины в зимнюю резину. Если ездить на летних покрышках зимой, то узкие канавки быстро забьются снегом, а он, превратившись в лёд, сделает из автомобиля прекрасное средство для неуправляемого скольжения по дорогам. Поэтому покрышки, приспособленные для езды по заснеженным и обледенелым дорогам, имеют широкие канавки и гораздо большую поверхность контакта с дорожным покрытием. Ну а если предстоит ехать по бездорожью, то покрышки должны быть глубоко рифлёными, т.к. грязь, имеющая большую вязкость, просто не пролезет через канавки, когда будет двигаться под весом наезжающего колеса.

Покрышки автомобильных шин, предназначенные для летних (слева),
зимних (в середине) дорог и бездорожья (справа)

Гонки «Формулы-1» – война шин. Каждый пилот гоночного болида хочет иметь хорошее сцепление с дорогой, чтобы обеспечить быстрый старт. Но это значит, что шины его автомобиля должны хорошо прилипать к дорожному покрытию. Ведь только тогда максимальная сила трения покоя будет велика. Но такая прилипчивая шина всегда будет оставлять на дороге след из частичек, прилипших навсегда к дорожному покрытию. Другими словами, износ шин с высоким сцеплением тоже высок. Поэтому на гонках «Формулы-1» средний ресурс шины около 200 км, в то время как у обычных шин он может составлять несколько десятков тысяч километров.

Шины гоночных болидов «Формулы-1» очень широкие и совсем «лысые»

Известно, что автомобильные гонки проходят на лысой резине или шинах с несколькими очень неглубокими канавками. Канавки в шинах гоночных машин не нужны, т.к. они увеличивают сцепление с дорогой только тогда, когда она мокрая. А при мокрой дороге гонки отменяют.

Для производства шин гоночных автомобилей используется специальная липкая резина. Поэтому сила трения этих шин на сухой дороге растёт с увеличением площади контакта, таким образом вступая в противоречие с классическим законом, справедливым для трения твёрдых и неэластичных поверхностей. Чтобы обеспечить максимальную силу трения, шины колёс гоночных автомобилей делают очень широкими (до 0,38 м), что также позволяет лучше рассеивать тепло, образующееся при трении о дорожное покрытие.

Чистая резина прилипает к дороге лучше, чем грязная. Поэтому перед самым стартом покрышки с помощью специальных устройств и процедур нагревают до 80°С, очищая их поверхность, обеспечивая хорошее прилипание к дорожному покрытию. Кстати, шины гоночных автомобилей иногда надувают азотом, т.к. влага, содержащаяся в обычном воздухе, при нагревании шин испаряется и увеличивает давление в колёсах, что создаёт дополнительные трудности в управлении.

О чём поют колёса? Шум, издаваемый колёсами автомобилей, – одна из основных проблем больших городов. Огромные средства тратятся ежегодно на борьбу с этим шумом, т.к. стоимость одного километра звукопоглощающего барьера, устанавливаемого вдоль шоссе, близка к миллиону долларов. Есть несколько теорий возникновения этого шума. В одной из них считается, что он возникает из-за колебаний деформированных участков внешней части покрышки, после того как они распрямляются. Другая связывает появление шума с отлипанием резины от дороги. Ну а самая романтичная гипотеза объясняет шум тем, что причиной всему воздух, двигающийся по канавкам автомобильных покрышек, как по трубам органа, и поэтому поющий.

Классики не всегда правы. Уже в XIX в. стало ясно, что закон Амонтона–Кулона не даёт правильного описания силы трения, а коэффициенты трения отнюдь не являются универсальными характеристиками. Прежде всего было отмечено, что коэффициенты трения зависят не только от того, какие материалы контактируют, но и от того, насколько гладко обработаны контактирующие поверхности. Выяснилось, например, что сила трения в вакууме всегда больше, чем при нормальных условиях.

Как отмечает лауреат Нобелевской премии по физике (1965) Р.Фейнман в своих лекциях, «…таблицы, в которых перечислены коэффициенты трения “стали по стали, меди по меди” и прочее, всё это сплошное надувательство, ибо в них этими мелочами пренебрегают, а ведь они-то и определяют значение . Трение “меди о медь” и т.д. – это на самом деле трение “о загрязнения, приставшие к меди”».

Можно, конечно, пойти по другому пути и, изучая трение «меди по меди», измерять силы при движении идеально отполированных и дегазированных поверхностей в вакууме. Но тогда два таких куска меди просто слипнутся, и коэффициент трения покоя начнёт расти со временем, прошедшим с начала контакта поверхностей. По тем же причинам коэффициент трения скольжения будет зависеть от скорости (расти с её уменьшением). Значит, точно определить силу трения для чистых металлов тоже невозможно.

Тем не менее для сухих стандартных поверхностей классический закон трения почти точен, хотя причина такого вида закона до самого последнего времени оставалась непонятной. Ведь теоретически оценить коэффициент трения между двумя поверхностями никто так и не смог.

Как атомы трутся друг о друга? – спрашиваем у учёных. Сложность изучения трения заключается в том, что место, где этот процесс происходит, скрыт от исследователя со всех сторон. Несмотря на это, учёные уже давно пришли к заключению, что сила трения связана с тем, что на микроскопическом уровне (т.е. если посмотреть в микроскоп) соприкасающиеся поверхности очень шероховатые, даже если они отполированы. Поэтому скольжение двух поверхностей друг по другу может напоминать фантастический случай, когда перевёрнутые Кавказские горы трутся, например, о Гималаи.

Прежде думали, что механизм трения несложен: поверхность покрыта неровностями, и трение есть результат следующих друг за другом циклов «подъём–спуск» скользящих частей. Но это неправильно, ведь тогда не было бы потерь энергии, а при трении расходуется энергия. Поэтому более правильной можно считать следующую модель трения. При скольжении трущихся поверхностей микронеровности задевают друг за друга, и в точках соприкосновения противостоящие друг другу атомы сцепляются. При дальнейшем относительном движении тел эти сцепки рвутся, и возникают колебания атомов, подобные тем, какие происходят при отпускании растянутой пружины. Со временем эти колебания затухают, а их энергия превращается в тепло, растекающееся по обоим телам. В случае скольжения мягких тел возможно также разрушение микронеровностей, так называемое «пропахивание», в этом случае механическая энергия расходуется на разрушение атомарных связей.

Таким образом, если мы хотим изучать трение, нам надо ухитриться двигать песчинку, состоящую из несколько атомов, вдоль поверхности на очень маленьком расстоянии от неё, измеряя при этом силы, действующие на эту песчинку со стороны поверхности. Это стало возможным после изобретения атомно-силового микроскопа (АСМ) Г.Биннингом и Г.Рорером, которым в 1986 г. была присуждена Нобелевская премия по физике. Создание такого микроскопа, способного чувствовать силы притяжения и отталкивания между отдельными атомами, дало возможность наконец «пощупать», что такое силы трения, открыв новую область науки о трении – нанотрибологию.

Основой АСМ служит микрозонд, обычно сделанный из кремния и представляющий собой тонкую пластинку-консоль (её называют кантилевером, от англ. cantilever – консоль, балка). На конце кантилевера (длина 500 мкм, ширина 50 мкм, толщина 1 мкм) делается очень острый шип (высота 10 мкм, радиус закругления 1–10 нм), оканчивающийся группой из одного или нескольких атомов. При перемещении микрозонда вдоль поверхности образца остриё шипа приподнимается и опускается, очерчивая микрорельеф поверхности, подобно скользящей по грампластинке игле. На выступающем конце кантилевера (над шипом) расположена зеркальная площадка, на которую падает и от которой отражается луч лазера. Когда шип опускается и поднимается на неровностях поверхности, отражённый луч отклоняется, и это отклонение регистрируется фотодетектором. Данные фотодетектора используются в системе обратной связи, которая может обеспечивать либо постоянное удаление шипа от поверхности образца, либо постоянную силу давления острия на образец.

В первом случае пьезоэлектрический преобразователь может регистрировать движение кантилевера, прыгающего от одного атома исследуемой поверхности к другому, строя таким образом объёмный рельеф поверхности образца в режиме реального времени. Разрешающая способность таких микроскопов составляет примерно 0,1–1 нм по горизонтали и 0,01 нм по вертикали. Смещая зонд по горизонтали, можно получить серию рельефов и с помощью компьютера построить трёхмерное изображение.

С помощью АСМ с начала 1990-х гг. проводятся систематические исследования силы трения микрозондов при их скольжения вдоль различных поверхностей и зависимости этих сил от силы прижатия. Оказалось, что для обычно используемых зондов, сделанных из кремния, микроскопическая сила трения скольжения составляет около 60–80% от прижимающей силы, которая составляет не более 10 нН. Как и следовало ожидать, сила трения скольжения растёт с размером микрозонда, т.к. количество атомов, одновременно его притягивающих, увеличивается. Таким образом, сила трения скольжения микрозонда зависит от площади его контакта с поверхностью, что противоречит классическому закону трения. Оказалось также, что сила трения скольжения не становится нулевой при отсутствии силы, прижимающей микрозонд к поверхности. Да это и понятно, т.к. окружающие микрозонд атомы поверхности так близко к нему расположены, что притягивают его даже в отсутствие внешней силы сжатия. Поэтому и основное предположение классического закона – о прямой пропорциональной зависимости силы трения от силы сжатия – тоже не соблюдается в нанотрибологии.

Однако все эти расхождения между основным законом и данными нанотрибологии, полученными с помощью АСМ, легко устраняются. При увеличении силы, прижимающей скользящее тело, увеличивается количество микроконтактов, а значит, увеличивается и суммарная сила трения скольжения. Поэтому никаких противоречий между только что полученными данными и старым законом нет.

Зависимость силы трения скольжения микрозонда от внешней силы N, прижимающей его к графитовой поверхности. Радиус кривизны зонда 17 нм (вверху) и 58 нм (внизу). При малых N зависимость нелинейная, а при больших приближается к линейной (пунктир). Данные взяты из статьи Х.Холшера и А.Шварца (2002)

Долгое время было принято считать, что, принуждая одно тело скользить по другому, мы ломаем малые неоднородности одного тела, которые цепляются за неоднородности поверхности другого, и для того, чтобы ломать эти неоднородности, и нужна сила трения. Поэтому старые представления часто связывают силу возникновение силы трения с повреждением микровыступов трущихся поверхностей, их так называемым износом. Нанотрибологические исследования с помощью АСМ и других современных методик показали, что сила трения между поверхностями может существовать даже тогда, когда они не повреждаются. Причиной такой силы трения служат постоянно возникающие и рвущиеся адгезионные связи между трущимися атомами.

Почему лёд скользкий? Узнать, почему можно скользить по льду, удалось учёным только сейчас. А началось всё давным-давно, в 1849 г. Братья Джеймс и Вильям Томсоны (последнему впоследствии за большие заслуги было присвоен титул лорда Кельвина) выдвинули гипотезу, согласно которой лёд под нами плавится оттого, что мы на него давим. И поэтому мы скользим уже не по льду, а по образовавшейся плёнке воды на его поверхности.

Действительно, если увеличить давление, то температура плавления льда понизится. Происходит это вот почему. Известно, что плотность льда меньше плотности воды, и поэтому, когда лёд сжимают, он, «пытаясь» уменьшить деформацию, вызванную ростом давления, «понижает» температуру плавления. Это одно из проявления так называемого принципа Ле Шателье: внешнее воздействие, выводящее систему из термодинамического равновесия, вызывает в ней процессы, стремящиеся ослабить результаты этого воздействия. Расчёты и эксперименты показали, что для того, чтобы понизить температуру плавления льда на один градус, необходимо давление увеличить до 121 атм (1,22 МПа). Попробуем посчитать, какое давление оказывает спортсмен на лёд, когда скользит по нему на одном коньке длиной 20 см и толщиной 0,3 см. Если считать, что масса спортсмена 75 кг, то его давление на лёд составит около 12 атм. Таким образом, стоя на коньках, мы едва ли сможем понизить температуру плавления льда больше, чем на 1 °С. Значит, объяснить скольжение по льду в коньках и тем более в обычной обуви, опираясь на принцип Ле Шателье, невозможно, если за окном, например, –10 °С.

В 1939 г., когда стало ясно, что понижением температуры плавления скользкость льда не объяснить, Ф.Бауден и Т.Хьюз предположили, что тепло, необходимое для плавления льда под коньком, даёт сила трения. Однако эта теория не могла объяснить, почему так тяжело бывает даже стоять на льду, не двигаясь. С начала 1950-х гг. учёные стали считать, что лёд скользкий из-за тонкой плёнки воды, образующейся на его поверхности в силу каких-то неизвестных причин. Только в конце 1990-х гг. изучение того, как рассеивает лёд рентгеновские лучи, действительно показало, что его поверхность не является упорядоченной кристаллической структурой, а скорее похожа на жидкость.

Учёные объяснили это тем, что расположенные на поверхности льда молекулы воды находятся в особых условиях. Силы, заставляющие их находиться в узлах гексагональной решётки, действуют на них только снизу. Поэтому поверхностным молекулам ничего не стоит «уклониться от советов» молекул, находящихся в решётке, и если это происходит, то к такому же решению приходят сразу несколько поверхностных слоёв молекул воды. В результате на поверхности льда образуется плёнка жидкости, служащая хорошей смазкой при скольжении.

Кстати, тонкие плёнки жидкости образуются не только на поверхности льда, но и многих других кристаллов. Толщина жидкой плёнки увеличивается с ростом температуры, т.к. более высокая тепловая энергия молекул вырывает из гексагональных решёток больше поверхностных слоёв. Наличие примесей (молекул, отличных от воды) тоже мешает поверхностным слоям образовывать кристаллические решётки. Поэтому увеличить толщину жидкой плёнки можно, растворив в ней какие-либо примеси, например, обычную соль. Этим и пользуются коммунальные службы, когда борются зимой с обледенением дорог и тротуаров.

Схематическое изображение поперечного среза льда. Беспорядочное расположение молекул воды на поверхности соответствует плёнке жидкости, а гексагональная структура в толще – кристаллическому льду. Серые кружки – атомы кислорода, белые – водорода

Трение качения – это совсем другое. В идеальном случае, когда колесо, сделанное из несжимаемого материала, по инерции катится по гладкой недеформируемой поверхности, никакие силы трения на это колесо не действуют. Колесо, касаясь поверхности в одной точке, вращается вокруг этой точки, потом точкой касания и центром вращения становится другая точка и т.д. Так как точка касания не движется относительно поверхности, то и сила трения скольжения отсутствует.

Однако в реальных условиях дорожное покрытие, и материал, из которого сделан диск колеса, не являются абсолютно жёсткими. Рассмотрим сначала первый случай. Если поставить колесо на мягкую поверхность, надавить сверху с силой P и пытаться, вращая его, продвинуть вперёд со скоростью v, то мы столкнёмся с силой сопротивления качению Fк. Колесо деформирует поверхность под собой так, что впереди появляется бугорок, который всё время приходится преодолевать. Горизонтальная составляющая сил реакции этого бугорка и представляет собой силу трения качения Fк. Вертикальные составляющие сил сопротивления бугорка компенсируются силой тяжести автомобиля. Так как высота бугорка пропорциональна весу колеса (или укреплённого на нём автомобиля), то и сила трения качения Fк тоже пропорциональна весу автомобиля и силе реакции со стороны дороги N: Fк = кN.

Качение несжимаемого колеса радиуса R по несжимаемой поверхности. K – точка касания и мгновенный центр вращения колеса с угловой скоростью , результатом которого является движение центра колеса О со скоростью

При качении мягкого колеса по твёрдой дороге на переднюю часть соприкасающейся с дорогой поверхности колеса всё время «наезжают». Поэтому она сжимается больше, чем задняя, и сила реакции от передней части колеса, направленная противоположно движению, тоже больше. Сила трения качения равна разности горизонтальных составляющих сил реакции от передней и задней частей колеса. Так как сжатие колеса пропорционально весу машины (или силе реакции опоры), то Fк = кN.

Возникновение силы трения при качении твёрдого колеса по мягкой дороге

Силы трения качения определяются жёсткостью материалов колеса и дорожного покрытия. Чем больше жёсткость, тем меньше величина трения качения. Поэтому, чтобы сократить расходы на топливо, необходимо как можно сильнее накачивать автомобильные колеса, делая их более жёсткими. Достаточно пощупать колёса грузовика, чтобы убедиться в этом. У пассажирского автомобиля давление в колёсах гораздо меньше, т.к. с жёсткими колёсами пассажиры будут ощущать все неровности дороги. В результате его шины больше деформируются, и соответственно растёт сила трения качения.

Возникновение силы трения при качении мягкого колеса по жёсткой дороге. При качении мягкого колеса деформация его передних участков больше, что приводит к появлению горизонтальной составляющей силы, действующей со стороны дороги, и силы, тормозящей движение, – силы трения качения

Сила, необходимая для преодоления трения качения, пропорциональна весу автомобиля и, вообще говоря, не зависит от скорости его движения. Чтобы измерить эту силу, поместите машину на горизонтальный участок дороги, поставьте рычаг переключения скоростей в нейтральное положение (отсоедините колёса от двигателя) и выключите зажигание. После этого привяжите к автомобилю трос, а к нему – пружинные весы. Прикладывая к тросу силу, постарайтесь сдвинуть машину с места и равномерно тянуть её. Одновременно с этим ваш помощник должен смотреть на показания весов и записывать их. Если нет пружинных весов, можно использовать бытовые весы для взвешивания человека. Такими весами можно толкать машину, используя их в качестве прокладки. Сила трения качения для автомобиля массой 1000 кг в среднем составляет около 100 Н.

Для очень дальних перевозок построили железные дороги, где железное колесо катится по железному рельсу с очень малым коэффициентом трения качения. Тормозят поезда медленно, но эксплуатация их очень выгодна.

Сила трения встречается буквально на каждом шагу. Но знают ли люди, зачем она нужна? В чем вред и польза силы трения? Попробуем разобраться.

Предисловие

На земные объекты действует несколько сил, которые тесно взаимосвязаны между собой и влияют на жизнедеятельность тел. Прежде всего, это сила тяжести, упругости (внутреннее сопротивление тел в ответ на смещение их молекул) и реакции опоры. Но есть еще она очень важная физическая величина, называемая силой трения. Она в отличие от силы тяготения и упругости не зависит от расположения тел. При ее изучении действуют иные законы: коэффициент трения скольжения и сила реакции опоры. Например, если понадобится сдвинуть тяжеловесный шкаф, то с первой же минуты станет понятно, что сделать это непросто. Кроме того, при выполнении данной задачи присутствуют определенные помехи. Что же препятствует усилиям, приложенным к шкафу? А мешает этому не что иное, как сила трения, принцип действия которой изучают еще в школе. Курс физики за 7 класс подробно рассказывает об этом явлении.

Что у нас под ногами?

С ней люди сталкиваются очень часто. Польза трения в том, что мы бы и шагу ступить не смогли, не будь этой физической величины. Именно она удерживает нашу обувь на той поверхности, куда мы ступаем. Каждый из нас ходил по очень скользким поверхностям, например, по льду, и не понаслышке знает, что это очень тяжело. Почему так происходит? Прежде чем рассказать о том, в чем вред и польза силы трения, определимся с тем, что это такое.

Суть понятия

Силой трения называется взаимодействие двух тел, возникающее в месте их соприкосновения и препятствующее их движению относительно друг друга. Различают несколько видов трения - покоя, скольжения и качения.

Причины возникновения

Первая из причин заключается в неизменной шероховатости поверхностей. Именно этот показатель влияет на то, какой вид силы трения будет иметь место. Если речь идет о гладких поверхностях, например, о покрытой металлом крыше или о ледяных участках, то их шероховатость почти не видна, однако это не значит, что ее нет - она присутствует на микроскопическом уровне. В этом случае будет действовать сила трения скольжения. Но если говорить о шкафе, стоящем на ковре, то здесь шероховатости двух объектов будут значительно препятствовать взаимному движению. Второй причиной является электромагнитное молекулярное отталкивание, которое происходит в месте контакта объектов.

Трение покоя

Что происходит в случае, когда мы пытаемся сдвинуть с места шкаф, однако нам не удается переместить его ни на сантиметр. Что удерживает предмет на одном месте? Это сила трения покоя. Дело в том, что приложенные усилия компенсируются силой сухого трения, возникающей между шкафом и полом.

Вред и польза силы трения покоя

Сила трения качения

Если мы вспомним, что когда-нибудь придется двигать шкаф обратно, то решим оснастить его колесиками. В этом случае возникающее взаимодействие будет называться трением качения, поскольку предмет уже будет не скользить, а катиться по поверхности. Катящиеся колесики будут немного вдавливаться в ковер, образовывая бугорок, который нам необходимо будет преодолеть. Этим и обуславливается сила трения качения. Разумеется, если мы покатим шкаф не по ковру, а, например, по паркету, то переместить его будет еще легче, за счет того, что поверхность паркета тверже поверхности ковра. По той же причине велосипедистам ехать по шоссе куда проще, чем по пляжу с мелким песком.

Неоднозначный вопрос

В чем состоит вред и польза силы трения любого типа? Разумеется, приведенные примеры несколько утрированы - в жизни все немного сложнее. Однако несмотря на то, что сила трения имеет очевидные минусы, создающие ряд сложностей в жизни, ясно, что без нее проблем было бы гораздо больше. Поэтому у данной величины есть свои недостатки и преимущества.

Негативные примеры

Среди примеров вреда этой силы на одном из первых мест стоит проблема перемещения тяжеловесных грузов, быстрого изнашивания любимых вещей, а также невозможности создать вечный двигатель, поскольку из-за трения любое движение рано или поздно прекращается, требуя стороннего вмешательства.

Положительные моменты

Среди примеров полезности этой силы то, что мы можем спокойно ходить по земле, не поскальзываясь на каждом шагу, наша одежда прочно сидит и мгновенно не приходит в негодность, поскольку нити ткани удерживаются благодаря трению. Кроме того, люди используют принцип действия этой силы, посыпая скользкие дороги, из-за чего удается избежать множества аварий и травм.

Выводы

Человечество научилось взаимодействовать с данной физической величиной, увеличивая и уменьшая ее в зависимости от поставленных целей. Наша непосредственная задача - попытаться использовать ее максимально эффективно.

Силы трения

Мы не в первый раз говорим о трении. И правда, как можно было, рассказывая о движении, обойтись без упоминания о трении? Почти любое движение окружающих нас тел сопровождается трением. Останавливается автомобиль, у которого водитель выключил мотор, останавливается после многих колебаний маятник, медленно погружается в банку с подсолнечным маслом брошенный туда маленький металлический шарик. Что заставляет тела, движущиеся по поверхности, останавливаться, в чем причина медленного падения шарика в масле? Мы отвечаем: это силы трения, возникающие при движении одних тел вдоль поверхности других.

Но силы трения возникают не только при движении.

Вам, наверное, приходилось передвигать мебель в комнате. Вы знаете, как трудно сдвинуть с места тяжелый шкаф. Сила, противодействующая этому усилию, называется силой трения покоя.

Силы трения возникают и когда мы двигаем предмет, и когда мы катим его. Это два несколько отличных физических явления. Поэтому различают трение скольжения и трение качения. Трение качения в десятки раз меньше трения скольжения.

Конечно, в некоторых случаях и скольжение происходит с большой легкостью. Санки легко скользят по снегу, а коньки по льду – и еще легче.

От каких же причин зависят силы трения?

Сила трения между твердыми телами мало зависит от скорости движения и пропорциональна весу тела. Если вес тела возрастет вдвое, то сдвинуть его с места и тащить будет вдвое труднее. Мы выразились не вполне точно, важен не столько вес, сколько сила, прижимающая тело к поверхности. Если тело легкое, но мы крепко надавили на него рукой, то, конечно, это скажется на силе трения. Если обозначить силу, прижимающую тело к поверхности (большей частью это вес), через Р , то для силы трения F тр будет справедлива такая простая формула:

F тр = kP .

А как же учитываются свойства поверхностей? Ведь хорошо известно, что одни и те же сани, на тех же полозьях скользят совсем по-разному, смотря по тому, обиты полозья железом или нет. Эти свойства учитываются коэффициентом пропорциональности k . Он называется коэффициентом трения.

Коэффициент трения металла по дереву равен 1/2. Сдвинуть лежащую на деревянном гладком столе металлическую плиту весом в 2 кГ удастся лишь силой в 1 кГ. А вот коэффициент трения стали по льду равен всего лишь 0,027. Ту же плиту удастся сдвинуть силой, равной всего лишь 54 Г.

Площадь поверхности не входит в приведенную формулу: сила трения не зависит от площади поверхности соприкосновения трущихся тел. Нужна одинаковая сила, чтобы сдвинуть с места или тащить с неизменной скоростью широкий лист стали весом в килограмм и килограммовую гирю, опирающуюся на поверхность лишь малой площадью.

И еще одно замечание о силах трения при скольжении. Сдвинуть тело с места несколько труднее, чем тащить: сила трения, преодолеваемая в первое мгновение движения (трение покоя), больше последующих значений силы трения на 20–30 %.

Что можно сказать о силе трения при качении, например для колеса? Как и трение скольжения, она тем больше, чем больше сила, прижимающая колесо к поверхности. Кроме того, сила трения качения обратно пропорциональна радиусу колеса. Это и понятно: чем больше колесо, тем меньшее значение имеют для него неровности поверхности, по которой оно катится.

Если сравнивать силы, которые приходится преодолевать, заставляя тело скользить и катиться, то разница получается очень внушительная. Например, чтобы тянуть по асфальту стальную болванку весом в 1 Т, нужно приложить силу в 200 кГ – на это способны лишь атлеты. А катить на тележке эту же болванку сможет и ребенок, для этого нужна сила не более 10 кГ.

Немудрено, что трение качения «победило» трение скольжения. Недаром человечество уже очень давно перешло на колесный транспорт.

Замена полозьев колесами еще не есть полная победа над трением скольжения. Ведь колесо надо насадить на ось. На первый взгляд невозможно избежать трения осей о подшипники. Так думали на протяжении веков и старались уменьшить трение скольжения в подшипниках лишь различными смазками. Услуги, оказываемые смазкой, немалые – трение скольжения уменьшается в 8–10 раз. Но даже и при смазке трение скольжения в очень многих случаях столь значительно, что обходится чрезмерно дорого. В конце прошлого века это обстоятельство сильно тормозило техническое развитие. Тогда и возникла замечательная идея заменить в подшипниках трение скольжения трением качения. Эту замену осуществляет шариковый подшипник. Между осью и втулкой поместили шарики. При вращении колеса шарики покатились по втулке, а ось – по шарикам. На рис. 109 показано устройство этого механизма. Таким способом трение скольжения было заменено трением качения. Силы трения уменьшились при этом в десятки раз.

Роль подшипников качения в современной технике трудно переоценить. Их делают с шариками, с цилиндрическими роликами, с коническими роликами. Такими подшипниками снабжены все машины, большие и малые. Существуют шариковые подшипники размером в миллиметр; некоторые подшипники для больших машин весят более тонны. Шарики для подшипников (вы их видели, конечно, в витринах специальных магазинов) производят самых различных диаметров – от долей миллиметра до нескольких сантиметров.

Из книги Пять нерешенных проблем науки автора Уиггинс Артур

Четыре силы Словно мало было хлопот с новыми частицами, в те же 1930 - е годы были открыты еще и новые поля. К уже известному тяготению и электромагнетизму добавились силы ядерного взаимодействия, удерживающие протоны и нейтроны в ядре, и силы слабого взаимодействия,

Из книги Межпланетные путешествия [Полёты в мировое пространство и достижение небесных тел] автора Перельман Яков Исидорович

IV Можно ли укрыться от силы тяжести? Мы слишком привыкли к тому, что все вещи, все физические тела прикованы своим весом к земле; нам трудно поэтому даже мысленно отрешиться от силы тяжести и представить себе картину того, что было бы, если бы мы обладали способностью

Из книги Вселенная. Руководство по эксплуатации [Как выжить среди черных дыр, временных парадоксов и квантовой неопределенности] автора Голдберг Дэйв

Заслон от силы тяжести Остроумный английский писатель Герберт Уэльс подробно развил эту мысль в научно-фантастическом романе „Первые люди на Луне".Ученый герой романа, изобретатель Кевор, открыл способ изготовления именно такого вещества, непроницаемого для

Из книги Движение. Теплота автора Китайгородский Александр Исаакович

К главе II 1. Силы тяготения Приведенные в начале главы II примеры действия силы тяготения могут быть проверены несложными расчетами, основанными, на законе Ньютона и элементах механики. Напомним сначала, что в механике за единицу измерения силы принята сила, которая,

Из книги НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. автора Тесла Никола

IV. Откуда же берутся эти силы? Наш разговор мы начали с того, что фундаментальные силы похожи на игры, однако в нашей игре не хватает одного компонента, без которого ничего не получится: это мяч. Задумайтесь об этом. Без мяча теннис - не более чем конвульсивное размахивание

Из книги Системы мира (от древних до Ньютона) автора Гурев Григорий Абрамович

Движение под действием силы тяжести Будем скатывать небольшую тележку с двух очень гладких наклонных плоскостей. Одну доску возьмем значительно короче другой и положим их на одну и ту же опору. Тогда одна наклонная плоскость будет крутой, а другая – пологой. Верхушки

Из книги Как понять сложные законы физики. 100 простых и увлекательных опытов для детей и их родителей автора Дмитриев Александр Станиславович

Момент силы Попробуйте рукой привести во вращение тяжелое маховое колесо. Тяните за спицу. Вам будет тяжело, если вы ухватитесь рукой слишком близко к оси. Переместите руку к ободу, и дело пойдет легче.Что же изменилось? Ведь сила в обоих случаях одна и та же. Изменилась

Из книги Вселенная! Курс выживания [Среди черных дыр. временных парадоксов, квантовой неопределенности] автора Голдберг Дэйв

Как складывать параллельные силы, действующие на твердое тело Когда на предыдущих страницах мы решали задачи механики, в которых тело мысленно заменялось точкой, вопрос о сложении сил решался просто. Правило параллелограмма давало ответ на этот вопрос, а если силы были

Из книги Быть Хокингом автора Хокинг Джейн

Поверхностные силы Можно ли выйти сухим из воды? Конечно, для этого нужно смазаться несмачивающимся водой веществом.Натрите палец парафином и опустите в воду. Когда вы его вынете, окажется, что воды на пальце нет, если не считать двух-трех капелек. Небольшое движение – и

Из книги автора

Силы сопротивления при больших скоростях Но вернемся к законам «мокрого» трения. Как мы выяснили, при малых скоростях сопротивление зависит от вязкости жидкости, скорости движения и линейных размеров тела. Рассмотрим теперь законы трения при больших скоростях. Но

Из книги автора

КАК КОСМИЧЕСКИЕ СИЛЫ ФОРМИРУЮТ НАШИ СУДЬБЫ* Каждое живое существо - это механизм, Хотя как кажется, влияет на него лишь непосредственное окружение, сфера внешнего воздействия простирается на бесконечное расстояние. Нет такого созвездия, туманности, солнца или планеты

Из книги автора

НА НАС ВЛИЯЮТ ПРИРОДНЫЕ СИЛЫ Приняв, что все это истинно, мы приходим к рассмотрению некоторых сил и влияний, которые воздействуют на этот чудесный сложный автоматический механизм с органами невообразимо чувствительными и изящными, когда его несет вращающийся

Из книги автора

Из книги автора

83 Еще раз про силы сцепления Для опыта нам потребуются: два кусочка стекла или два маленьких зеркальца. Мы помним, как иголка плавала на воде в одном из наших опытов. Помогали ей плавать силы поверхностного натяжения. Но вот вопрос: можно ли почувствовать силу

Из книги автора

IV. Откуда же берутся эти силы? Наш разговор мы начали с того, что фундаментальные силы похожи на игры, однако в нашей игре не хватает одного компонента, без которого ничего не получится: это мяч. Задумайтесь об этом. Без мяча теннис – не более чем конвульсивное размахивание

Из книги автора

16. Без юридической силы Хотя меня в некоторой степени утешала новообретенная независимость духа, семейный катаклизм на самом деле сломил меня. Во тьме поражения я чувствовала, что опозорена и что от меня все отреклись, что я неуклюже пытаюсь вновь найти свою личность, как



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png