Тип ремня Обозначение сечения Размеры сечения, мм Предельная длина L p , мм Минимальный диаметр шкива
d p min, мм
Размеры канавок в шкивах, мм
l p ω Т 0 b h e f α град при d p min d p > при α=40°
Нормального сечения (ГОСТ 1284.1-80 и ГОСТ 1284.3-80) О 8,5 10 6 400-2500 63 2,5 7,0 12 8 34 180
А 11 13 8 560-4000 90 3,3 8,7 15 10 34 450
Б 14 17 10,5 800-6300 125 4,2 10,8 19 12,5 34 560
В 19 22 13,5 1800-10000 200 5,7 14,3 25,5 17 36 710
Г 27 32 19 3150-14000 315 8,1 19,9 37 24 36 1000
Д 32 38 23,5 4500-18000 500 9,6 23,4 44,5 29 36 1250
Е 42 50 30 6300-18000 800 12,5 30,5 58 38 38 1600
Узкого сечения (РТМ 38 40545-79) УО 8,5 10 8 630-3550 63 2,5 10 12 8 34 180
УА 11 13 10 800-4500 90 3 13 15 10 34 450
УБ 14 17 13 1250-8000 140 4 17 19 12,5 34 560
УВ 19 22 18 2000-8000 224 5 19 25,5 17 34 710

Диаметр d и ширину В шкива, ширину ремня b выбирают из следующего ряда размеров:
10, 16, 20, 25, 32, 40, 45, 50, 63, 71, 80, 90, 100, 112, 125, 140, 160, 180, 200, 224, 250, 280, 315, 355, 400, 450, 500, 560, 630, 710, 800, 900, 1000, 1120, 1250, 1400, 1600, 1800, 2000 мм.

Стандартом предусмотрены пределы d=40-2000 мм; В=16-630 мм. Ширину ремня b берут на один размер меньше ширины шкива. Рабочая поверхность шкива может быть цилиндрической или выпуклой для центрирования ремня на шкиве. Стрела выпуклости 0,3-6 мм (пропорционально диаметру шкива).

Клиноременная передача применяется при скорости от 5 до 30 м/с для нормального и от 5 до 40 м/с для узкого сечения соответственно. Передаваемая мощность до 50 кВт, передаточное число n<7, число ремней в передаче 2-8. Клиновые ремни выполняются бесконечными прорезиненными, трапецеидальной формы с несущим слоем в виде нескольких слоев кордткани или шнура. В зависимости от соотношения ширины и высоты ремни изготовляют трех типов: нормального, узкого и широкого, применяемого в бесступенчатых передачах (вариаторах) по ГОСТ 24848.1-81 и ГОСТ 24848.3-81.

Стандартизированы следующие расчетные (по нейтральной линии) длины ремней: 400, 450, 500, 560, 630, 710, 800, 900, 1000, 1120, 1250, 1400, 1600, 1800, 2000,. 2240, 2500, 2800, 3150, 3550, 4000, 4500, 5000, 5600, 6300, 7100, 8000, 9000, 10 000, 11200, 12 500, 14 000, 16 000, 18 000.

Шкивы имеют в ободе канавки под клиновой ремень. Угол канавок варьируется в диапазоне от 34° до 40° и зависит от диаметра шкива.

Поликлиновая передача

8.24. Размеры поликлиновых ремней
Обозначение сечения Размеры сечения, мм Предельная длина, мм Рекомендуемое число ребер Наименьший диаметр малого шкива, мм
t H h δ
К 2,4 4 2,35 1 355-2500 2-35 40
Л 4,8 9,5 4,85 2,5 1250-4000 4-20 80
М 9,5 16,7 10,35 3,5 2000-4000 4-20 180
Примечание. Расчетные длины ремней приняты в указанных диапазонах по 40-му ряду предпочтительных чисел.

Применяется при скорости: 35-40 м/с и передаточном числе n=10-15. Ремень выполняется бесконечным резиновым с клиновыми выступами на внутренней стороне и несущим слоем из кордшнура. Размеры ремней приведены в справочной таблице.

Основные размеры зубчатых ремней

Модуль, мм Ширина 6, мм Число зубьев Zp
1 3-12,5 40-160
1,5 3-20
2 5-20
3 12,5-50
4 20-100 48-250
5 25-100 48-200
7 40-125 56-140
10 50-200 56-100
Примечание. Длина ремня L p =p * z p = m * π * z p , где р - шаг зубьев.

Круглоременная передача

применяется для передачи малых мощностей. В таком типе передач применяют кожаные, хлопчатобумажные, текстильные или прорезиненные ремни диаметром 4-8 мм. Шкив имеет канавку полукруглой или клиновидной формы с углом 40°.

Зубчато-ременная передача применяется при скоростях 50 м/с и мощности до 100 кВт при передаточном числе n:12 (20). Ее преимущества: отсутствие скольжения, малые габариты, незначительное начальное натяжение. В соответствии с ОСТ 38 05246-81 ремни изготовляются замкнутой длины из неопрена или полиуретана и армируются металлическим тросом.
Зубья ремней имеют трапецеидальную или полукруглую форму. Во избежание схода ремня шкивы имеют по одному ограничительному диску с разных сторон либо малый шкив имеет два диска с обеих сторон.

Шкивы

для ременных передач изготовляются литыми, сварными или сборными. Материал и способ изготовления шкивов определяются максимальной скоростью ремня. Получают распространение шкивы из пластмассы и текстолита (при скорости вращения менее 25 м/с). Шкивы, работающие со скоростью более 5 м/с, подвергаются статической балансировке, а шкивы быстропроходных передач, особенно при значительной ширине - динамической балансировке. Величина допустимого дисбаланса приведена в справочной таблице.

Дисбаланс шкивов

Окружная скорость шкива, м/с Допускае­мый дис­баланс, г*м Окружная скорость шкива, м/с Допускае­мый дис­баланс, г*м
от 5 до 10 6 от 20 до 25 1-6
от 10 до 15 3 от 25 до 40 1,0
от 15 до 20 2 от 40 0,5

Дисбаланс устраняют засверливанием отверстий на торцах обода, наплавкой, креплением груза и другими способами. Нерабочие поверхности металлических шкивов должны быть окрашены.

Обычно клиноременная передача представляет собой открытую передачу с одним или несколькими ремнями. Рабочими поверхностями ремня являются его боковые стороны.

По сравнению с плоскоременными, клиноременные передачи обладают большей тяговой способностью, имеют меньшее межосевое расстояние, допускают меньший угол обхвата малого шкива и большие передаточные числа (и ≤ 10). Однако стандартные клиновые ремни не допускают скорость более 30 м/с из-за возможности крутильных колебаний ведомой системы, связанных с неизбежным различием ширины ремня по его длине и, как следствие, непостоянством передаточного отношения за один пробег ремня. У клиновых ремней большие потери на трение и напряжения изгиба, а конструкция шкивов сложнее.

Клиноременные передачи широко используют в индивидуальных приводах мощностью до 400 кВт. КПД клиноременных передач η= 0,87...0,97.

Поликлиновые ременные передачи не имеют большинства недостатков, присущих клиноременным, но сохраняют достоинства последних. Поликлиновые ремни имеют гибкость, сравнимую с гибкостью резинотканевых плоских ремней, поэтому они работают более плавно, минимальный диаметр малого шкива передачи можно брать меньшим, передаточные числа увеличить до и ≤ 15, а скорость ремня – до 50 м/с. Передача обладает большой демпфирующей способностью.

Клиновые и поликлиновые ремни . Клиновые приводные ремни выполняют бесконечными из резинотканевых материалов трапецеидального сечения с углом клина φ 0 = 40°. В зависимости от отношения ширины b 0 большего основания трапеции к ее высоте h клиновые ремни бывают нормальных сечений (b 0 /h ≈ 1,6); узкие (b 0 /h ≈ 1,2); широкие (b 0 /h ≈ 2,5 и более; применяют для клиноременных вариаторов).

В настоящее время стандартизованы клиновые ремни нормальных сечений , предназначенные для приводов станков, промышленных установок и стационарных сельскохозяйственных машин. Основные размеры и методы контроля таких ремней регламентированы ГОСТ 1284.1 – 89; обозначения сечений показаны на рис. 1.45. Ремни сечения ЕО применяют только для действующих машин и установок. Стандартные ремни изготовляют двух видов: для умеренного и тропического климата, работающих при температуре воздуха от минус 30 до плюс 60°С, и для холодного и очень холодного климата, работающих при температуре от минус 60 до плюс 40°С. Ремни сечений А, В и С для увеличения гибкости могут изготовляться с зубьями (пазами) на внутренней поверхности, полученными нарезкой или формованием (рис. 1.46, в ). Клиновые ремни (рис.1.46, а ,б ) состоят из резинового или резинотканевого слоя растяжения 1, несущего слоя 2 на основе материалов из химических волокон (кордткань или кордшнур), резинового слоя сжатия 3 и оберточного слоя прорезиненной ткани 4. Сечение ремня кордтканевой (а ),кордшнуровой (б )конструкции показаны на рис.1.46. Более гибки и долговечны кордшнуровые ремни, применяемые в быстроходных передачах. Допускаемая скорость для ремней нормальных сечений υ < 30 м/с.

Технические условия на ремни приводные клиновые нормальных сечений регламентированы ГОСТ 1284.2 – 89, а передаваемые мощности – ГОСТ 1284.3 – 89.

Кроме вышеуказанных приводных клиновых ремней стандартизованы: ремни вентиляторные клиновые (для двигателей автомобилей, тракторов и комбайнов) и ремни приводные клиновые (для сельскохозяйственных машин).

При необходимости работы ремня с изгибом в двух направлениях применяют шестигранные (сдвоенные клиновые) ремни.

Весьма перспективны узкие клиновые ремни , которые передают в 1,5–2 раза большие мощности, чем ремни нормальных сечений. Узкие ремни допускают меньшие диаметры малого шкива и работают при скоростях до 50 м/с; передачи получаются более компактными. Четыре сечения этих ремней УО(SPZ), УА(SРА), УБ(SPB), УВ(SPC) заменяют семь нормальных сечений. В скобках даны обозначения по ИСО.

Узкие ремни обладают повышенной тяговой способностью за счет лучшего распределения нагрузки по ширине несущего слоя, состоящего из высокопрочного синтетического корда. Применение узких ремней значительно снижает материалоемкость ременных передач. Узкие ремни пока не стандартизованы и изготовляются в соответствии с ТУ 38 605 205 – 95.

Следует отметить, что в клиноременных передачах с несколькими ремнями из-за разной длины и неодинаковых упругих свойств нагрузка между ремнями распределяется неравномерно. Поэтому в передаче не рекомендуется использовать более 8...12 ремней.

Поликлиновые ремни (см. рис.1.43, г ) представляют собой бесконечные плоские ремни с ребрами на нижней стороне, работающие на шкивах с клиновыми канавками. По всей ширине ремня расположен высокопрочный синтетический шнуровой корд; ширина такого ремня в 1,5 – 2 раза меньше ширины комплекта ремней нормальных сечений при одинаковой мощности передачи.

Поликлиновые ремни пока не стандартизованы; на основании нормали изготовляют три сечения кордшнуровых поликлиновых ремней, обозначаемых К, Л и М, с числом ребер от 2 до 50, длиной ремня от 400 до 4000 мм и углом клина φ 0 = 40°.

По сравнению с плоскоременными, клиноременные передачи обладают значительно большей тяговой способностью за счет повышенного сцепления, обусловленного приведенным коэффи­циентом трения f  " между ремнем и шкивом.

Как известно из рассматриваемой в теоретической механике теории трения клинчатого ползуна:

f  " =f  /sin(α/2),

где f – коэффициент трения на плоскости (для прорезиненной ткани по чугунуf =0,3); α– угол профиля канавки шкива.

Приняв α= φ 0 = 40°, получим:

f  " =f  /sin20° ≈ 3f .

Таким образом, при прочих равных условиях клиновые ремни способны передавать в три раза большую окружную силу, чем плоские.

Ре­мённая передача относится к механическим передачам с гибкой связью, в ко­торых гибкими промежуточными звеньями могут быть ремни, цепи или кана­ты. Ремённые передачи плоским ремнём получили распространение в XIX веке для привода текстильных и токарных станков. Затем были предложены клино­вые и зубчатые ремни. По принципу работы различают ремённые передачи трением (большинство передач) и зацеплением (зубчато-ремённые передачи).

Приступая к изучению этой темы, прежде всего, следует уяснить отличие ремённой передачи от всех других. Это отличие состоит в том, что при увели­чении нагрузки основная деталь передачи - ремень - до конца использует свою тяговую способность, определяемую силой трения между ремнём и шкивом, а затем начинается буксование шкива по ремню. В результате сильного нагрева ремень может быть разрушен и передача выходит из строя.

Ремённая передача (рис. 102,а)состоит из двух шкивов 1 и 2, ремня 3 и на­тяжного устройства 4. Механическая энергия от ведущего шкива к ведомому шкиву передаётся за счёт сил трения, возникающих при надевании ремня на шкивы с предварительным (монтажным) натяжением Fo. По форме поперечно­го сечения ремней различают передачи с плоским (рис. 102,б), клиновым (рис. 102, в), поликлиновым (рис. 102, г) и зубчатым ремнём.

Обычно ремённые передачи используют в качестве первой от двигателя ступени привода. В этом случае её габариты и масса оказываются сравнительно небольшими.

Достоинства ремённой передачи трением: возможность работы с высокими скоростями, предохранение узлов привода от перегрузок, простота конструкции, бесшумность при работе, дешевизна.

Недостатки: малая долговечность ремня в быстроходных передачах, большие габариты передачи, зна­чительные усилия на валы и опоры.

К материалам ремней предъявляются требования высокой прочности при переменных напряжениях, износостойкости, максимального коэффициента трения по рабочей поверхности шкива, минимальной изгибной жёсткости. Область применения плоскоремённых передач - быстроходные переда­чи при высоких требованиях к плавности работы.

Рис.102. Ремённая передача (а) и форма поперечного сечения ремней: б - плоского, в - клинового, г – поликлинового.

Высокоскоростные плоскоремённые передачи применяют как ускоритель­ные в приводах быстроходных технологических машин, например, шлифо­вальных станков, центрифуг и др. При скорости ремня v > 30 м/с передача мощности может и должна осуществляться только плоскими тонкими бесшов­ными (бесконечными) ремнями в виде замкнутой ленты определённой длины. Никакие сшивки или другие виды соединения концов ремня высокоскоростных передач недопустимы, так как ремни неизбежно рвутся от динамических воздействий в местах соединения. Быстроходные ремни выполняют тонкими из соображений долговечности, требующей минимальных напряжений изгиба, от которых, главным образом, при большом числе перегибов ремня в секунду за­висит усталостная прочность материала ремня.

Современными типами плоских бесконечных ремней являются синтетические тканые (рис. 103, а, вверху) и прорезиненные кордшнуровые ремни (рис. 103, а, внизу). Благодаря высокой упругости материала они хорошо амортизи­руют колебания нагрузки и вибрации деталей. Ширина синтетических тканых ремней от 10 до 100 мм, толщина ремня 0,8 или 1 мм, диапазон длин от 250 до 3350 мм. Допустимая скорость до 75 м/с. Ширина прорезиненных кордошнуровых ремней от 30 до 60 мм, толщина 2,8 мм, внутренняя длина от 500 до 5600 мм. Допустимая скорость до 35 м/с. При расчёте плоскоремённой передачи определяют размеры поперечного сечения ремня. Изменением ширины плоского ремня b р можно варьировать нагрузочную способность передачи.

Рис. 103. Конструкции поперечного сечения тяговых ремней: а - плоских, б - клиновых, в - поликлиновых

Клиноремённые передачи имеют универсальное назначение. Клиновые ремни обеспечивают большую тяговую способность и меньшие габариты передачи для одинаковой мощности по сравнению с передачами плоским ремнём. Распространение получили кордтканевые и кордшнуровые ремни (рис. 103, б)слойной конструкции, изготовляемые бесконечными. Клиновые ремни в пере­даче применяют от 2 до 8 штук в комплекте, чтобы варьировать нагрузочную способность передачи. Из-за «рассеяния» длин ремней нагрузка между ними в комплекте распределяется неравномерно, поэтому в клиноремённых передачах требуется подбирать ремни с минимальным отклонением по длине. Клиновые ремни выполняют с углом φ = 36...40°. Отношение большего основания трапециевидного сечения к высоте b p /h ≈ 1,6 (ремни нормального сечения) или b p /h ≈ 1,2 (узкие клиновые ремни). Узкие клиновые ремни вслед­ствие большей гибкости дают возможность заменить ремни нормальных сече­ний, уменьшить количество ремней в комплекте и размеры передачи.

Поликлиновой ремень (рис. 103, е) - плоский бесконечный ремень со шну­ровым кордом и клиновыми выступами на нижней стороне. Он имеет строго фиксированное и постоянное положение нейтрального слоя, а также ширину и длину рабочих клиньев. Это гарантирует спокойную работу, позволяет приме­нить шкивы меньших диаметров и работать при скоростях до 40 м/с. Ширина поликлинового ремня при передаче такой же мощности значительно меньше ширины комплекта обычных клиновых ремней.

Тип клинового ремня - ремень нормального сечения (Z, А, В, С, D, Е, ЕО), узкий клиновой ремень (сечения УО, УА, УБ или УВ) или поликлиновой ре­мень (сечения К, Л или М) - назначают в зависимости от величины вращающе­го момента на ведущем шкиве Т 1 , Н∙м. При расчёте клиноремённой передачи определяют не размеры поперечного сечения ремня, а количество клиновых ремней z p в комплекте или количество клиньев z поликлинового ремня.

Зубчато-ремённая передача (рис. 104) соединяет в себе достоинства ре­мённых и цепных передач. По названию и конструкции тягового органа эту пе­редачу относят к ремённым, а по принципу работы - к цепным передачам. Та­кая передача компактна, работает плавно и почти бесшумно, не требует смазы­вания и тщательного ухода. Принцип зацепления устраняет проскальзывание ремня на шкивах, нет необходимости и в большом предварительном натяжении ремня.

Обычно клиноременная передача представляет собой от­крытую передачу с одним или несколькими ремнями. Рабочими поверх­ностями ремня являются его боковые стороны.

По сравнению с плоскоременными клиноременные передачи обла­дают большей тяговой способностью, имеют меньшее межосевое рас­стояние, допускают меньший угол обхвата малого шкива и большие пе­редаточные числа < 10). Однако стандартные клиновые ремни не до­пускают скорость более 30 м/с из-за возможности крутильных колебаний ведомой системы, связанных с неизбежным различием ширины ремня по его длине и, как следствие, непостоянством передаточного отношения за один пробег ремня. У клиновых ремней большие потери на трение и на­пряжения изгиба, а конструкция шкивов сложнее.

Клиноременные передачи широко используют в индивидуальных приво­дах мощностью до 400 кВт. КПД клиноременных передач η = 0,87 ... 0,97.

Поликлиновые ременные передачи не имеют боль­шинства недостатков, присущих клиноременным, но сохраняют достоин­ства последних. Поликлиновые ремни имеют гибкость, сравнимую с гиб­костью резинотканевых плоских ремней, поэтому они работают более плавно, минимальный диаметр малого шкива передачи можно брать меньшим, передаточные числа увеличить до и < 15, а скорость ремня - до 50 м/с. Передача обладает большой демпфирующей способностью.

Клиновые и поликлиновые ремни. Клиновые приводные ремни выполняют бесконечными резинотканевой конструкции трапецеидально­го сечения с углом клина φ 0 = 40°. В зависимости от отношения ширины b а большего основания трапеции к ее высоте h клиновые ремни бывают нормальных сечений (b 0 /h = 1,6, см.); узкие (b 0 /h= 1,2); широкие (b 0 /h =2,5 и более; применяют для клиноременных вариаторов).

В настоящее время стандар­тизованы клиновые рем­ни нормальных сече­ний, предназначенные для при­водов станков, промышленных установок и стационарных сель­скохозяйственных машин. Ос­новные размеры и методы контроля таких ремней регламентированы ГОСТ 1284.1-89. Ремни сечения Е0 применяют только для действующих машин и установок. Стан­дартные ремни изготовляют двух видов: для Умеренного и тропического климата, работаю­щих при температуре воздуха от минус 30 до плюс 60 °С, и для холодного и очень холодного климата, работающих при температуре от ми­нус 60 до плюс 40 °С. Ремни сечений А, В и С для увеличения гибкости могут изготовляться с зубь­ями (пазами) на внутренней поверхности, полу­ченными нарезкой или формованием (рис. 6.9, в).

Клиновые ремни (рис. 6.9, а, 6) состоят из резинового или резинотканевого слоя растяже­ния 1, несущего слоя 2 на основе материалов из химических волокон (кордткань или кордшнур), резинового слоя сжатия 3 и оберточного слоя прорезиненной ткани 4. Сечение ремня кордтканевой (а), кордшнуровой (б) конструк­ции показаны на рис. 6.9. Более гибки и долго­вечны кордшнуровые ремни, применяемые в быстроходных передачах. Допускаемая скорость для ремней нормальных сечений v < 30 м/с.


Технические условия на ремни приводные клиновые нормальных се­чений регламентированы ГОСТ 1284.2-89, а передаваемые мощности - ГОСТ 1284.3-89.

Кроме вышеуказанных приводных клиновых ремней стандартизова­ны: ремни вентиляторные клиновые (для двигателей автомобилей, трак­торов и комбайнов) и ремни приводные клиновые (для сельскохозяйст­венных машин).

При необходимости работы ремня с изгибом в двух направлениях применяют шестигранные (сдвоенные клиновые) ремни.

Весьма перспективны узкие клиновые ремни, которые пе­редают в 1,5-2 раза большие мощности, чем ремни нормальных сече­ний. Узкие ремни допускают меньшие диаметры малого шкива и работа­ют при скоростях до 50 м/с; передачи получаются более компактными. Четыре сечения этих ремней У0 (SPZ), УА (SPA), УБ (SPB), УВ (SPC) заменяют семь нормальных сечений.

Узкие ремни обладают повышенной тяговой способностью за счет лучшего распределения нагрузки по ширине несущего слоя, состоящего из высокопрочного синтетического корда. Применение узких ремней значительно снижает материалоемкость ременных передач. Узкие ремни пока не стандартизованы и изготовляются в соответствии с ТУ 38 605 205-95.

Следует отметить, что в клиноременных передачах с несколькими ремнями из-за разной длины и неодинаковых упругих свойств нагрузка между ремнями распределяется неравномерно. Поэтому в передаче не рекомендуется использовать более 8...12 ремней.

Поликлиновые ремни (см. рис. 6.1, г) представляют собой бесконечные плоские ремни с ребрами на нижней стороне, работающие на шкивах с клиновыми канавками. По всей ширине ремня расположен высокопрочный синтетический шнуровой корд; ширина такого ремня в 1,5-2 раза меньше ширины комплекта ремней нормальных сечений при одинаковой мощности передачи.

Поликлиновые ремни пока не стандартизованы; на основании нор­мали изготовляют три сечения кордшнуровых поликлиновых ремней, обозначаемых К, Л и М, с числом ребер от 2 до 50, длиной ремня от 400 до 4000 мм и углом клина φ 0 = 40°.

По сравнению с плоскоременными клиноременные передачи облада­ют значительно большей тяговой способностью за счет повышенного сцепления, обусловленного приведенным коэффициентом трения f " между ремнем и шкивом.

Как известно из рассматриваемой в теоретической механике теории трения клинчатого ползуна,

f "= f sin(a /2),

где f - коэффициент трения на плоскости (для прорезиненной ткани по чугуну f = 0,3); a - угол профиля канавки шкива.

Приняв a = φ 0 = 40°, получим

f " = f sin20°=3 f .

Таким образом, при прочих равных условиях клиновые ремни способны передавать в три раза боль­шую окружную силу, чем плоские.

Расчет передачи с клино­выми ремнями. Расчет проводят из условий обеспечения тяговой способности и долговечности ремней; он основан на тех же предпосылках, что и расчет плос­коременных передач.

Расчет ремней выполняют с помощью таблиц, содержащих номинальные мощности, передаваемые одним ремнем в зависимости от сече­ния ремня, расчетного диаметра малого шкива, его частоты вращения и передаточного числа (расчетный диаметр шкива клиноременной передачи соответствует положению нейтрального слоя ремня, установленного в канавке шкива; см. диаметр d p на рис. 6.14).

Проектный расчет клиноременной передачи начинают с вы­бора сечения ремня по заданной передаваемой мощности и часто­те вращения малого шкива с помощью графиков (рис. 6.10). При мощно­стях до 2 кВт применяют сечение Z, а сечение ЕО - при мощностях свы­ше 200 кВт.

ремня............ Z А В С D Е УО УА УБ УВ

d min , мм......... 63 90 125 200 355 500 63 90 140 224

Следует помнить, что вышеприведенные значения расчетных диа­метров малого шкива обеспечивают минимальные габариты передачи, но с увеличением этого диаметра возрастают тяговая способность и КПД передачи, а также долговечность ремней. При отсутствии жестких требо­ваний к габаритам передачи расчетный диаметр d 1 малого шкива следует принимать больше минимально допустимого значения. Диаметр d 2 боль­шого шкива определяют по формуле

d 2 =ud 1 ,

где и - передаточное число передачи; полученное значение округляют до ближайшего стандартного размера.

Расчетные диаметры шкивов клиноременных передач выбирают из стандартного ряда (мм):

63; 71; 80; 90; 100; 112; 125; 140; 160; 180; 200; 224; 250; 280; 315; 355; 400; 450; 500 и т. д.

v = πd 1 n 1 / 60 ,

где d 1, n 1 - расчетный диаметр и частота вращения малого шкива.

В ходе дальнейшего расчета находят все геометрические параметры передачи.

Межосевое расстояние а предварительно определяют по условию

0,55(d 1 + d 2) + h2(d 1 + d 2) ,

где h - высота сечения ремня. Следует помнить, что с увеличением ме­жосевого расстояния долговечность ремней увеличивается.

Расчетная длина ремня L p вычисляется по формуле, приве­денной в § 6.1, и округляется до ближайшей стандартной длины из ряда (для сечения В) (мм): 800; 900; 1000; 1120; 1250; 1400; 1600; 1800; 2000; 2120; 2240 и т. д. до 6300. Затем по формуле, приведенной в § 6.1, опре­деляют окончательное межосевое расстояние а в зависимости от приня­той стандартной расчетной длины ремня.

Угол обхвата а, на малом шкиве вычисляется по формуле,

приведенной в § 6.1.

Мощность Р р, передаваемая одним ремнем, рассчитывается по

Р p = Р o С a С L /С p ,

где Р о - номинальная мощность, передаваемая одним ремнем (для ремней сечения В находится по табл. 6.2; для других сечений - по таблицам ГОСТа).

С а - коэффициент угла обхвата:

а° 1 ............. 180 160 140 120 90

С а................ 1,0 0,95 0,89 0,82 0,68

C L - коэффициент длины ремня, зависящий от отношения принятой длины L ремня к исходной длине L Р, указанной в стандарте:

L/L p .......... 0,3 0,5 0,8 1,0 1,6 2,4

C L ............. 0,79 0,86 0,95 1,0 1,1 1,2

(подробная таблица значений C L приведена в стандарте); С р - коэффици­ент динамичности и режима работы; ориентировочно принимается как для плоскоременных передач, см. § 6.2 (подробная таблица значений С р приведена в стандарте).

Дальнейший расчет клиноременной передачи сводится к определе­нию числа ремней z по формуле

где Р - передаваемая мощность на ведущем валу; C z - коэффициент, учитывающий число ремней в комплекте, вводится при z > 2:

z..................... 2-3 4-6 >6

С z ................... 0,95 0,90 0,85

Во избежание значительной неравномерности распределения нагруз­ки между ремнями не рекомендуется в одной передаче использовать бо­лее 8 ремней нормального сечения и 12 узких ремней; число ремней мел­ких сечений не следует брать больше 6.

R = 2F 0 z sin(a 1 /2), где F o - натяжение ветви одного ремня; a 1 - угол обхвата малого шкива.

Величину F 0 натяжения ветви одного ремня вычисляют по формуле

F 0 =(0,85РС р С z)/zνC a + θν 2

где v - окружная скорость ремня; θ- коэффициент, учитывающий влияние центробежных сил:

Сечение ремня.... Z А В С D E E0

θ, Н*с 2 /м 2 0,06 0,1 0,18 0,3 0,6 0,9 1,5

Передачи с узкими и поликлиновыми ремнями рассчитывают по ана­логичной методике. Таблицы мощностей, передаваемых одним узким ремнем и поликлиновым ремнем с 10 ребрами, имеются в учебных посо­биях по курсовому проектированию деталей машин.

При расчете поликлиновых ремней определяют число ребер z по формуле

z =10P/P p

где Р - передаваемая мощность на ведущем валу; Р р - мощность, пере­даваемая ремнем с 10 ребрами.

Расчет долговечности клиновых ремней нормальных сече­ний установлен ГОСТ 1284.2-89. Средний ресурс L h ср ремней в эксплуатации для среднего режима работы устанавливается 2000 ч. При легких, тяжелых и очень тяжелых режимах работы расчетный ре­сурс вычисляют по формуле

L hp = L h ср K 1 K 2

где К 1 - коэффициент режима работы, равный: для легкого режима - 2,5; для тяжелого режима - 0,5; для очень тяжелого режима - 0,25; К 2 - коэффициент, учитывающий климатические условия эксплуатации, рав­ный: для районов с холодным и очень холодным климатом - 0,75; для остальных районов - 1,0.

Режим работы для конкретных машин устанавливают по ГОСТу. Так, например, для станков с непрерывным процессом резания (токарные, сверлильные, шлифовальные) режим работы полагается легким; для фре­зерных, зубофрезерных станков режим работы полагается средним; стро­гальные, долбежные, зубодолбежные и деревообрабатывающие стан­ки работают в тяжелом режиме; очень тяжелый режим работы полага­ется для подъемников, экскаваторов, молотов, дробилок, лесопильных рам и др.

Классификация передач. В зависимости от формы поперечного сечения ремня передачи бывают: плоскоременные, клиноременные, круглоременные, поликлиноременные (рис. 69). Плоскоременные передачи по расположению бывают перекрестные и полуперекрестные (угловые), рис. 70. В современном машиностроении наибольшее применение имеют клиновые и поликлиновые ремни. Передача с круглым ремнем имеет ограниченное применение (швейные машины, настольные станки, приборы).

Разновидность ременной передачи является Зубчатоременная , передающая нагрузку путем зацепления ремня со шкивами.

Рис. 70. Виды плоскоременных передач: а – перекрестная, Б – полуперекрестная (угловая)

Назначение. Ременные передачи относится к механическим передачам трения с гибкой связью и применяют в случае если необходимо передать нагрузку между валами, которые расположены на значительных расстояниях и при отсутствии строгих требований к передаточному отношению. Ременная передача состоит из ведущего и ведомого шкивов, расположенных на некотором расстоянии друг от друга и соединенных ремнем (ремнями), надетым на шкивы с натяжением. Вращение ведущего шкива преобразуется во вращение ведомого благодаря трению, развиваемому между ремнем и шкивами. По форме поперечного сечения различают Плоские , Клиновые , Поликлиновые и Круглые приводные ремни. Различают плоскоременные передачи - Открытые , которые осуществляют передачу между параллельными валами, вращающимися в одну сторону; Перекрестные, Которые осуществляют передачу между параллельными валамиПри вращении шкивов в противоположных направлениях; в Угловых (полуперекрестных) плоскоременных передачах шкивы расположены на скрещивающихся (обычно под прямым углом) валах. Для обеспечения трения между шкивом и ремнем создают натяжение ремней путем предварительного их упругого деформирования, путем перемещения одного из шкивов передачи или с помощью натяжного ролика (шкива).

Преимущества. Благодаря эластичности ремней передачи работают плавно, без ударов и бесшумно. Они предохраняют механизмы от перегрузки вследствие возможного проскальзывания ремней. Плоскоременные передачи применяют при больших межосевых расстояниях и, работающие при высоких скоростях ремня (до 100М/с ). При малых межосевых расстояниях, больших передаточных отношениях и передаче вращения от одного ведущего шкива к нескольким ведомым предпочтительнее клиноременные передачи. Малая стоимость передач. Простота монтажа и обслуживания.

Недостатки. Большие габариты передач. Изменение передаточного отношения из-за проскальзывания ремня. Повышенные нагрузки на опоры валов со шкивами. Необходимость устройств для натяжения ремней. Невысокая долговечность ремня.

Сферы применения. Плоскоременная передача проще, но клиноременная обладает повышенной тяговой способностью и вписывается в меньшие габариты.

Поликлиновые ремни - плоские ремни с продольными клиновыми выступами-ребрами на рабочей поверхности, входящими в клиновые канавки шкивов. Эти ремни сочетают достоинства плоских ремней - гибкость и клиновых - повышенную сцепляемость со шкивами.

Круглоременные передачи применяют в небольших машинах, например машинах швейной и пищевой промышленности, настольных станках, а также различных приборах.

По мощности ременные передачи применяются в различных машинах и агрегатах при 50КВ Т, (в некоторых передачах до 5000КВт ), при окружной скорости - 40М/с , (в некоторых передачах до 100М/с ), по передаточным числам 15, КПД передач: плоскоременные 0,93…0,98, а клиноременные – 0,87…0,96.

Рис. 71 Схема ременной передачи.

Силовой расчет. Окружная сила на ведущем шкиве

. (12.1)

Расчет ременных передач выполняют по расчетной окружной силе с учетом коэффициента динамической нагрузки И режима работы передачи:

Где - коэффициент динамической нагрузки, который принимается =1 при спокойной нагрузке, =1,1 – умеренные колебания нагрузки, =1.25 – значительные колебания нагрузки, =1,5 – ударные нагрузки.

Начальную силу натяжения ремня F O (предварительное натяжение) принимают такой, чтобы ремень мог сохранять это натяжение достаточно длительное время, не подвергаясь большой вытяжке и не теряя требуемой долговечности. Соответственно этому начальное напряжение в ремне для плоских стандартных ремней без автоматических натяжных устройств =1,8МПа ; с автоматическими натяжными устройствами = 2МПа ; для клиновых стандартных ремней =1,2...1,5МПа ; для полиамидных ремней = 3...4МПа .

Начальная сила натяжения ремня

Где А - Площадь поперечного сечения ремня плоскоременной передачи либо площадь поперечного сечения всех ремней клиноременной передачи.

Силы натяжения ведущей И ведомой S2 Ветвей ремня в нагруженной передаче можно определить из условия равновесия шкива (рис. 72).

Рис. 72. Схема к силовому расчету передачи.

Из условия равновесия ведущего шкива

(12.4)

С учетом (12.2) окружная сила на ведущем шкиве

Натяжение ведущей ветви

, (12.6)

Натяжение ведомой ветви

. (12.7)

Давление на вал ведущего шкива

. (12.8)

Зависимость между силами натяжения ведущей и ведомой ветвей приближенно определяют по формуле Эйлера, согласно которой натяжений концов гибкой, невесомой, нерастяжимой нити, охватывающей барабан связаны зависимостью

Где - коэффициент трения между ремнем и шкивом, - угол обхвата шкива.

Среднее значение коэффициента трения для чугунных и стальных шкивов можно принимать: для резинотканевых ремней =0,35, для кожаных ремней = 0,22 и для хлопчатобумажных и шерстяных ремней = 0,3.

При определении сил трения в клиноременной передаче в формулы вместо – коэффициента, трения надо подставлять приведенный коэффициент трения для клиновых ремней

, (12.10)

Где - угол клина ремня .

При совместном рассмотрении приведенных силовых соотношений для ремня получим окружную силу на ведущем шкиве

, (12.11)

Где - коэффициент тяги, который определяется по зависимости

Увеличение окружного усилия на ведущем шкиве можно достичь увеличением предварительного натяжения ремня либо повышением коэффициента тяги, который повышается с увеличением угла обхвата и коэффициента трения.

В таблицах со справочными данными по характеристикам ремней указаны их размеры с учетом необходимых коэффициентов тяги.

Геометрический расчет. Расчетная длина ремней при известном межосевом расстоянии и диаметрах шкивов (рис.71):

Где . Для конечных ремней длину окончательно согласовывают со стандартными длинами по ГОСТ. Для этого выполняют геометрический расчет согласно схемы показанной на рис.73.

Рис.73. Схема к геометрическому расчету ременной передачи

По окончательно установленной длине плоскоременной или клиноременной открытой передачи действительное межосевое расстояние передачи пои условии, что

Расчетные формулы без учета провисания и начальной деформации ремня.

Угол обхвата ведущего шкива ремнем в радианах:

, (12.14)

В градусах .

Порядок выполнения проектного расчета. Для ременной передачи при проектном расчете по заданным параметрам (мощность, момент, угловая, скорость и передаточное отношение) определяются размеры ремня и приводного шкива, которые обеспечивают необходимую усталостную прочность ремня и критический коэффициент тяги при максимальном КПД. По выбранному диаметру ведущего шкива из геометрического расчета определяются остальные размеры:

Проектный расчет плоскоременной передачи по тяговой способности производят по допускаемому полезному напряжению, Которое определяют по кривым скольжения. В результате расчета определяется ширина ремня по формуле:

, (12.15)

Где - окружная сила в передаче; - допустимая удельная окружная сила, которая соответствует максимальному коэффициенту тяги, которая определяется при скорости ремня =10 м/с и угле обхвата =1800; - коэффициент расположения передачи в зависимости от угла наклона линии центров к горизонтальной линии: =1,0, 0,9, 0,8 для углов наклона =0…600, 60…800, 80…900; - коэффициент угла обхвата шкива ; - скоростной коэффициент: ; - коэффициент режима работы, который принимается: =1,0 спокойная нагрузка; =0,9 нагрузка с небольшими изменениями, =0,8 – нагрузка с большими колебаниями, =0,7 – ударные нагрузки.

Для расчета предварительно по эмпирическим формулам определяется диаметр ведущего шкива

, (12.16)

Где - передаваемая мощность в кВт, - частота вращения.

Диаметр ведущего шкива округляется до ближайшего стандартного.

Принимается тип ремня, по которому определяется допустимая удельная окружная сила по таблице 12.1.

Таблица 12.1

Параметры плоских приводных ремней

Расчетную ширину ремня округляют до ближайшей стандартной ширины по табл.12.2.

Таблица 12.2 Стандартная ширина плоских приводных ремней

20, 25,32, 40, 50, 63, 71, 80, 90, 110, 112, 125, 140, 160, 180, 200, 224, 250, 280…

30, 60, 70, 115, 300…

Таблица 12.3 Ширина обода шкива плоскоременной передачи.

Проектный расчет клиноременной передачи по тяговой способности производят по допускаемой мощности передаваемой одним ремнем выбранного поперечного сечения, которое также определяют по кривым скольжения. В результате расчета определяется количество ремней выбранного сечения по формуле:

, (12.17)

Где - допускаемая мощность, передаваемой одним поперечного сечения; - коэффициент угла обхвата шкива: ; - коэффициент длины ремня: ; - коэффициент, который учитывает неравномерность нагружения между ремнями .

Для расчета по формуле (12.17) предварительно по эмпирическим зависимостям определяется тип поперечного сечения ремня (рис.74), а по нему предварительно принимается диаметр ведущего шкива по передаваемой мощности и частоте вращения, согласно таблице 12.3.

Таблица 12.4

Мощность N 0, которая передается одним клиновым ремнем при α =180o, длине ремня 0 спокойном нагружении и передаточном отношении U = 1

d 1, мм

Р0 (кВт) при скорости ремня υ, м/с

l 0=1320мм

l 0=1700мм

l 0=2240мм

l 0=3750мм

l 0=6000мм

Перевод системы обозначений сечений клиновых ремней по ГОСТ 1284 в международные стандарты: О – Z, А – A, Б – B, В – C, Г – D, Д – E, Е – E0

Межосевое расстояние может быть задано в исходных данных, либо приниматься в диапазоне

,

Где - высота, выбранного сечения ремня.

В результате геометрического расчета передачи уточняются значения параметров определяются расчетная длина ремня , которая округляется до ближайшего стандартного значения, согласно таблице 12.5.Таблица 12.5

Стандартная длина клиновых ремней

Длина , мм

Сечение ремня

400; 425; 450; 475; 500; 530

*

560; 600; 630; 670; 710; 750

* *

800; 850; 900; 950; 1000; 1060

* * *

1120; 1180; 1250; 1320; 1400; 1500; 1600; 1700; 1800; 1900; 2000; 2120; 2240; 2360;2500

* * * *

2650; 2800; 3000; 3150; 3350; 3550; 3750; 4000

* * *

4250; 4500; 4750; 5000; 5300; 5600; 6000

* *

6300; 6700; 7100; 7500; 8000; 8500; 9000; 9500; 10000; 10600

*

Расчетное число клиновых ремней округляют до ближайшего большего целого числа.

Проверочный расчет на долговечность. Долговечность ремня определяется его сопротивлением усталости при циклическом нагружении. Сопротивление усталости определяется числом циклов нагружений, которое возрастает с увеличением при скорости ремня и уменьшении его длины. Для обеспечения долговечности ремня в пределах 1000…5000 часов работы проверяется число пробегов ремня в секунду, которое соответствует числу нагружений в секунду

Где - скорость ремня, - длина ремня; 15,0

Таблица 12.7

Таблица 12.7

Размеры и параметры клиновых ремней

Обозначение

сечения, мм

F , мм2

Нормального сечения



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png