И.В. Возницкий
Год выпуска: 2008
Издательство : Моркнига
Жанр: Техническая Литература
Язык: Русский
Цена: 1000 рублей

Целью настоящего издания является оказание практической помощи при изучении конструкции и особенностей эксплуатации главных судовых малооборотных двухтактных дизелей модели МС с диаметрами цилиндров от 50 до 98 см., выпускаемых фирмой "MAN Diesel" и ее лицензиатами. Фирма "МАН -Дизель" наряду с фирмой "Вяртсиля", занимает ведущее положение в области судового дизелестроения.

Первый раздел посвящен анализу тенденций развития малооборотных двигателей, проблемам повышения их эффективности на переходных режимах и режимах малых нагрузок.

Во втором разделе рассматриваются особенности конструкции двигателей модельно ряда МС 50-98. Особое внимание уделяется топливовпрыскивающей аппаратуре.

Третий раздел посвящен вопросам организации технического обслуживания двигателей и обслуживающих их систем и механизмов. Здесь же приводится сводная таблица типичных повреждений дизелей, их причин и методов предупреждений.

Основная часть книги (Раздел IV) построена на материалах фирменной Инструкции по эксплуатации двигателей МС 40С (эксплуатация) и 8С (компоненты и обслуживание) и в большей части ее дублирует. Здесь помещены копии материалов инструкции фирмы, отобранных автором и несущих наибольшую информацию, необходимую судовым механикам при решении ими задач эксплуатации дизелей и их технического обслуживания.

Однако, надо учитывать, что представленная публикация полную фирменную инструкцию не заменяет и в ряде случаев необходимо ее использовать.

Раздел I. Малооборотные двигатели, тенденции развития, характеристики
1. Системы газообмена 2-х тактных двигателей
2. Газотурбинный наддув 2-х тактных двигателей
3. Воздухоснабжение двигателей при пуске и на маневрах, помпаж ГТК
4. Оптимизация тепловой энергии
5. Использование энергии выхлопных газов в силовых газовых турбинах
Раздел II. Модельный ряд МС двигателей «МАН - Бурмейстер и Вайн».
6. Особенности конструкции двигателей
7. Топливовпрыскивающая аппаратура.
Раздел III. Техническое обслуживание дизелей - повышение эффективности их эксплуатации и предотвращение отказов
8. Системы технического обслуживания.
9. Превентивное техническое обслуживание.
10. Техническое обслуживание по состоянию.
11. Основы диагностирования технического состояния,
12. Современные методы организации технического обслуживания судовых дизелей
13. Сводная таблица повреждений судовых дизелей.
Раздел IV. Выдержки из инструкции по эксплуатации и техническому обслуживанию двигателей MAN&BW - МС 50-98.
Проверки во время стоянки. Регулярные проверки остановленного
дизеля при нормальной эксплуатации. Пуск, управление и прибытие в порт.
Неисправности при пуске. Проверки в период пуска.
Нагружение.
Проверки при нагружении
Работа.
Неисправности при пуске. Неисправности при работе
Проверки при работе. Остановка.
Пожар в ресивере продувочного воздуха
и воспламенение в картере
Помпаж турбонагнетателя
Аварийная работа с отключенными цилиндрами или турбонагнетателями
Вывод цилиндров из эксплуатации. Пуск после вывода цилиндров из
эксплуатации. Работа двигателя с одним отключенным цилиндром.
Длительная работа с ТН, выведенным из эксплуатации.
Вывод цилиндров из эксплуатации
Наблюдения при работе двигателя
Оценка параметров двигателя в эксплуатации. Рабочий диапазон.
Нагрузочная диаграмма. Пределы для работы с перегрузкой.
Характеристика винта
Эксплуатационные наблюдения
Оценка записей.
Параметры, относящиеся к среднему индикаторному давлению (Pmi).
Параметры, относящиеся к эффективной мощности (Ре).
Повышенный уровень температуры выпускных газов - диагностика
неисправностей.
Механические дефекты, способствующие снижению давления сжатия.
Диагностика охладителей воздуха.
Удельный расход топлива.
Коррекция рабочих параметров
Примеры расчетов:
Максимальная температура выпускных газов.
Оценка эффективной мощности двигателя без
индикаторных диаграмм. Индекс топливного насоса.
Частота вращения турбонагнетателя.
Нагрузочная диаграмма только для движения судна.
Нагрузочная диаграмма для движения судна и привода валогенератора.
Замер показателей, определяющих термодинамическое состояние двигателя.
Поправка на окружающие условия ИСО:
Максимальное давление сгорания, Температура выпускных газов,
Давление сжатия. Давление надувочного воздуха.
Примеры замеров
Состояние цилиндра
Функционирование поршневых колец. Осмотр через продувочные окна. Наблюдения.
Переборка цилиндра
Сроки между переборками поршней. Первичный осмотр и снятие колец.
Замер износа колец. Осмотр цилиндровой втулки.
Замеры износа цилиндровой втулки
Юбка поршня, головка поршня и охлаждающая жидкость.
Кольцевые канавки поршня Восстановление рабочих
поверхностей втулки, колец и юбки.
Зазор в замках колец (новые кольца).
Установка поршневых колец. Зазор поршневых колец.
Смазка цилиндра и монтаж.
Обкатка втулок и колец
Факторы, влияющие на износ цилиндровой втулки.
Смазка цилиндра.
Цилиндровые масла. Величина подачи цилиндрового масла.
Расчет дозировки при спецификационной мощности.
Расчет дозировки при частичных нагрузках.
Осмотр состояния ЦПГ через продувочные окна, осмотр поршневых колец
Дозировка цилиндрового масла при обкатке.
Расходы масла при спецификационной мощности.
Шейки / Подшипники
Общие требования. Антифрикционные металлы. Покрытия.
Шероховатость поверхности. Искровая эрозия. Геометрия поверхности.
Шейки ремонтного раздела.
Проверка без вскрытия. Ревизия со вскрытием и переборка.
Виды повреждений
Причины наволакивания. Трещины, причины трещин.
Ремонт переходных участков (канавок) для масла.
Скорость износа подшипников. Ремонт подшипников на месте.
Ремонт шеек. Крейцкопфные подшипники. Рамовые и мотылевые подшипники.
Узел упорного подшипника и подшипники распределительного вала. Проверка
новых подшипников перед монтажом
Центровка рамовых подшипников.
Измерение раскепов. Проверка раскепов. Кривая раскепов.
Причины изгиба коленчатых валов. Измерения по струне.
Центровка валопровода. Перезатяжка фундаментных болтов
и болтов концевых клиньев. Перезатяжка анкерных связей.
Программа проверок и обслуживания двигателей МС
Крышка цилиндра. Поршень со штоком и сальником.
Проверка поршня и колец. Лубрикаторы. Втулка цилиндра и охлаждающая
рубашка. Осмотр и обмер втулки. Крейцкопф с шатуном. Смазка
подшипников. Проверка поступательно движущихся частей. Проверка
зазора в мотылевом подшипнике. Коленчатый вал, упорный подшипник и
валоповоротный механизм. Проверка раскепов коленчатого вала. Демпфер
продольных колебаний. Цепной привод. Проверка цепного привода,
регулировка демпфера натяжного устройства. Осмотр рабочих поверхностей
кулаков ТНВД. Проверка зазора в подшипнике распределительного вала.
Регулирование положения распределительного вала из-за износа цепи.
Система продувочного воздуха двигателя
Работа с вспомогательными воздуходувками.
Охладитель надувочного воздуха, Очистка воздухоохладителя
Сухая очистка турбины ТН.
Система пускового воздуха и выхлопа.
Главный пусковой клапан, воздухораспределитель.
Пусковой клапан. Выпускной клапан, аварийная работа
с открытым выпускным клапаном. Проверка регулировки
кулака выпускного клапана.
Топливные насосы высокого давления. Проверка, регулировка оперережем
Форсунки. Проверка, переборка распылителей. Испытание на стенде.
Топливо, топливная система
Топлива, их характеристики. Стандарты на топлива. ТНВД, регулировки.
Топливная система, топливообработка.
Циркуляционное масло и система смазки.
Система циркуляционного масла, Неисправности системы.
Уход за циркуляционным маслом. Чистота масляной системы.
Очистка системы. Подготовка циркуляционного масла. Процесс сепарации.
Старение масла. Циркуляционное масло: анализы и характерные свойства.
Смазка распределительного вала. Объединенная система смазки.
Смазка турбонагнетателя.
Вода, системы охлаждения
Система забортной охлаждающей воды. Система охлаждения цилиндров.
Центральная система охлаждения. Подогрев во время стоянки.
Неисправности системы охлаждения цилиндров. Водоподготовка.
Уменьшение эксплуатационных неисправностей.
Проверка системы и воды в эксплуатации. Очистка и ингибирование.
Рекомендуемые ингибиторы коррозии.

В соответствии с требованием Регистра, реверс дизеля должен осуществляться за 12 секунд. Изменение направления вращения двигателей обеспечивается изменением фаз воздухо и газораспределения и моментов топливоподачи. В 4-тактных двигателях реверс осуществляется с помощью 2-х комплектов кулачных шайб воздухо, топливо и газораспределения, которые перемещаются в осевом направлении вместе с распределительным валом. Аналогичное решение применяла фирма МАН в своих 2-тактных дизелях.

Фирма Зульцер

Применяет для реверса 2-тактных ДВС одни комплект кулачных шайб. Реверс осуществляется до пуска двигателя путем разворота распределительного вала на требуемый угол относительно коленчатого вала с помощью специального сервомотора.

В двигателях фирмы Бурмейстер и Вайн валик воздухораспределителя имеет 2 комплекта кулачков и при реверсе перемещается в осевом направлении. Вал топливо и газораспределения в малооборотных двигателях старой конструкции имел один комплект шайб и реверсировался после того, как двигатель начинал вращаться на противоположный ход (коленчатый вал как бы разворачивался относительно распределительного вала).

В двигателях 4-й модификации фирма Бурмейстер и Вайн перешла на реверс распредвала по тому же принципу, что и Зульцер. В наиболее распространенных современных двигателях ряда МС фирмы MAN - B&W распределительный вал вообще не реверсируется; вместе с реверсом воздухораспределителя изменяются лишь моменты топливоподачи путем перемещения серьги толкателя ТНВД с помощью сервомотора индивидуально на каждый цилиндр.

Успешность реверсирования и запуска двигателя на задний ход зависит от того, с какого режима работы требуется реверс. Если при маневрировании скорость судна близка к 0, двигатель работает малым ходом или даже остановлен, то реверс не вызывает затруднений. Реверсирование со среднего или полного хода является особо сложной и ответственной операцией, поскольку обычно связано с аварийной ситуацией. Сложность возрастает тем в большей степени, чем больше водоизмещении и скорость хода судна.

При необходимости реверса с полного хода (точка 1 на рис. 3) отключается подача топлива в цилиндры. При этом движущий момент становится равным 0, частота вращения довольно быстро - за 3-7 секунд - падает до n = (0,5-0,7)n н . Уравнение движения в этот период имеет вид:

I (d ω / d τ) = M В + M Т (№ 2)

  • где ℑ (dω/dτ) - момент от сил инерции;
  • M В - момент, развиваемый винтом;
  • M Т - момент от сил трения.

Гребной винт вращается за счет сил инерции валопровода и двигателя и создает некоторый положительный упор. При некоторой частоте вращения момент и упор винта становятся равными нулю, хотя винт продолжает вращаться в прежнем направлении (точка 2 рис. 3). При дальнейшем снижении частоты вращения упор становится отрицательным, винт начинает работать как гидротурбина за счет инерции корпуса судна. Уравнение движения в этот период имеет вид:

I (d ω / d τ) + M В — M Т (№ 3)

Дальнейшее снижение частоты вращения обеспечивается за счет момента от сил трения M Т и снижения скорости движения корпуса судна (уменьшения момента M В ). Двигатель остановится, когда правая часть приведенной выше зависимости станет равна ее левой части (точка 3 на рис. 3). При этом скорость судна обычно снижается до 4.5-5.5 узлов. Для достижения этого момента требуется длительное время (от 2 до 10 минут), которое порой отсутствует. Поэтому приходится прибегать к остановке валопровода с помощью “контрвоздуха”, подаваемого в цилиндр через пусковые клапаны.

Рис. 3 Кривые действия винта при торможении контрвоздухом с полного (пх) и среднего (сх) хода

Порядок реверса при контрвоздухе

  1. После выключения подачи топлива рычаг реверса переводят из положения “вперед” в положение “назад”, хотя коленчатый вал продолжает при этом вращаться вперед, распределительный вал реверсируется;
  2. В районе точки 2 (рис. 3) в цилиндр начинает подаваться пусковой воздух, при этом двигатель тормозится, т.к. подача воздуха приходится на линию сжатия;
  3. После остановки двигатель раскручивается на воздухе в направлении “назад” и переводится на топливо.

Если при нормальном пуске подача воздуха в цилиндр осуществлялась на линии расширения от углов φ В1 = 0 до φ В2 = 90° пкв после ВМТ, то при подаче контрвоздуха геометрические моменты воздухоподачи меняются на противоположные. Воздух начинает поступать в цилиндр на линии сжатия за 90° пкв до ВМТ и заканчивает поступать в районе ВМТ. При этом действительные моменты воздухоподачи и эффективность торможения контрвоздухом зависят от конструкции пусковых клапанов цилиндров.

Если тарелка пускового клапана имеет тот же диаметр, что и поршень управления, то клапан закроется при достижении давления в цилиндре Р Ц примерно равном давлению Р В в пусковой магистрали (рис. 4).


Рис. 4 Характеристики равновесия пусковых клапанов

а) п р и D у = D к л;

б) п р и D у = 1 , 73 D к л

Это происходит намного раньше геометрического конца подачи воздуха в цилиндр. При этом воздух, оставшийся в цилиндре, будет сжиматься и продолжать затормаживать двигатель. В районе ВМТ часть воздуха стравится в атмосферу через предохранительный клапан. Количество стравленного воздуха - небольшое, учитывая небольшое сечение предохранительного клапана. При дальнейшем движении поршня, когда он пройдет ВМТ, сжатый воздух расширяется и продолжает раскручивать дизель. Таким образом, если двигатель остановится до прихода поршня в ВМТ, то торможение контрвоздухом будет эффективным, если не остановится - контрвоздух неэффективен. Такая картина торможения контрвоздухом наблюдается в малооборотных двигателях фирмы МАН.

Если площадь управляющего поршня больше тарелки клапана (двигатели Бурмейстер и Вайн, Зульцер), то для закрытия клапана требуется гораздо большее давление в цилиндре (рис. 4). Клапаны открываются при торможении контрвоздухом на ходе сжатия, и после достижении давления Р Ц - P В воздух из цилиндра начинает перетекать при высоком давлении в пусковую магистраль. Поршень совершает работу выталкивания на линии сжатия.

Пусковой клапан закрывается в соответствии с геометрическим моментом воздухонодачи. При таком клапане работа сжатия оказывается гораздо больше работы расширения, эффект торможения контрвоздухом хороший. Воздух, выталкиваемый из цилиндра в пусковую магистраль, поступает в соседний цилиндр, что уменьшает расход пускового воздуха. При таком типе пусковых клапанов снижается выбег судна за счет более скорого запуска дизеля на задний ход.

При реверсе с полного хода двигатель обычно передерживается на воздухе - для гарантии запуска в противоположном направлении. Этого делать не надо - необходимо лишь при переводе на топливо топливную рейку поставить на большую подачу.

Судовой дизель фирмы "МАН - Бурмейстер и Вайн" (MAN B&W Diesel A/S), марки L50MC/MCE - двухтактный простого действия, реверсивный, крейцкопфный с газотурбинным наддувом (с постоянным давлением газов перед турбиной) со встроенным упорным подшипником, расположение цилиндров рядное, вертикальное.

Диаметр цилиндра- 500 мм; ход поршня - 1620мм; система продувки -прямоточно-клапанная.

Эффективная мощность дизеля: Ne = 1214 кВт

Номинальная частота вращения: n н = 141 мин -1 .

Эффективный удельный расход топлива на номинальном режиме g e = 0,170 кг/кВт ч.

Габаритные размеры дизеля:

Длина (по фундаментальной раме), мм 6171

Ширина (по фундаментальной раме), мм 3770

Высота, мм. 10650

Масса, т 273

Поперечный разрез главного двигателя представлен на рис. 1.1. Охлаждающая жидкость - пресная вода (по замкнутой системе). Температура пресной воды на выходе из дизеля на установившемся режиме работы 80...82 °С. Перепад температур на входе и выходе из дизеля - не более 8...12°С.

Температура смазочного масла на входе в дизель 40...50 °С, на выходе из дизеля 50...60°С.

Среднее давление: Индикаторное - 2,032 мПа; Эффективное -1,9 мПа; Максимальное давление сгорания-14,2 мПа; Давление продувочного воздуха- 0,33 мПа.

Назначенный ресурс до капитального ремонта - не менее 120000ч. Срок службы дизеля - не менее 25 лет.

Цилиндровая крышка изготавливается из стали. В центральном отверстии с помощью четырёх шпилек крепится выпускной клапан.

Кроме того, крышка снабжена сверлениями под форсунки. Другие сверления предназначены для индикаторного, предохранительного и пусковых клапанов.

Верхняя часть цилиндровой втулки окружена охлаждающей рубашкой, устанавливаемой между цилиндровой крышкой и блоком цилиндра. Цилиндровая втулка крепится к верхней части блока крышкой и центруется в нижнем сверлении внутри блока. Плотность от утечек охлаждающей воды и продувочного воздуха обеспечивается четырьмя резиновыми кольцами, вложенными в канавках цилиндровой втулки. На нижней части цилиндровой втулки между полостями охлаждающей воды и продувочного воздуха расположено 8 отверстий для штуцеров подачи смазочного масла в цилиндр.

Центральная часть крейцкопфа соединена с шейкой головного подшипника. В поперечной балке имеется отверстие для поршневого штока. Головной подшипник оборудован вкладышами, которые заливаются баббитом.

Крейцкопф снабжен сверлениями для подачи масла, поступающего по телескопической трубке частично на охлаждение поршня, частично на смазку головного подшипника и направляющих башмаков, а также через отверстие в шатуне на смазку мотылёвого подшипника. Центральное отверстие и две скользящие поверхности башмаков крейцкопфа заливаются баббитом.

Коленчатый вал выполняется полусоставным. Масло к рамовым подшипникам поступает из главного трубопровода смазочного масла. Упорный подшипник служит для передачи максимального упора винта посредством вала винта и промежуточных валов. Упорный подшипник устанавливается в кормовой секции фундаментальной рамы. Смазочное масло для смазки упорного подшипника поступает из системы смазки под давлением.

Распределительный вал состоит из нескольких секций. Секции соединяются с помощью фланцевых соединений.

Каждый цилиндр двигателя снабжен отдельным топливным насосом высокого давления (ТНВД). Работа топливного насоса осуществляется от кулачной шайбы на распределительном валу. Давление передаётся через толкатель плунжеру топливного насоса, который посредством трубки высокого давления и распределительной коробки соединён с форсунками, установленными на цилиндровой крышке. Топливные насосы - золотникового типа; форсунки - с центральным подводом топлива.

Воздух в двигатель поступает от двух турбокомпрессоров. Колесо турбины ТК приводится в движение от выпускных газов. На одном валу с колесом турбины установлено колесо компрессора, который забирает воздух из машинного отделения и подает воздух в охладитель. На корпусе охладителя устанавливается влагоотделитель. Из охладителя воздух поступает в ресивер через открытые невозвратные клапаны, расположенные внутри ресивера надувочного воздуха. С обоих торцов ресивера установлены вспомогательные воздуходувки, которые подают воздух мимо охладителей в ресивере при закрытых невозвратных клапанах.

Рис.

Секция цилиндров двигателя состоит из нескольких блоков цилиндров, которые крепятся к фундаментальной раме и коробке картера анкерными связями. Между собой блоки соединяются по вертикальным плоскостям. В блоке располагаются цилиндровые втулки.

Поршень состоит из двух основных частей головки и юбки. Головка поршня крепится к верхнему кольцу поршневого штока болтами. Юбка поршня крепится к головке 18-ю болтами.

Поршневой шток имеет сквозное сверление под трубу для охлаждающего масла. Последняя крепится в верхней части поршневого штока. Дальше масло поступает по телескопической трубке к крейцкопфу, проходит по сверлению в основании поршневого штока и поршневом штоке к головке поршня. Затем масло поступает по сверлению к опорной части головки поршня к выпускной трубе поршневого штока и далее на слив. Шток крепится к крейцкопфу четырьмя болтами, проходящими через основание поршневого штока.

Используемые сорта топлив и масел

Конструкцию распылителя форсунки судовых дизелей Бурмейстер и Вайн (рис. 6.4.5., а) с незначительными изменениями применяли до тех пор, пока не была создана принципиально новая форсунка с другим распылителем (рис. 6.4.5., б).

В конструкции, показанной на рис. 6.4.5., а, сопло 10 запрессовано в корпус 11 (соплодержатель), который притирается к нижнему торцу направляющей 8 иглы 7. Верхний торец направляющей притерт к корпусу 1 форсунки. Массивной гайкой 9 соплодержатель 11, направляющая 8 и нижняя часть корпуса 1 скреплены в единый герметичный узел. Штифты 5 обеспечивают совпадение участков каналов охлаждения 12 топливопровода 6. Сопло 10 закреплено в корпусе 11 горячей посадкой, чем обеспечивается надежная фиксация сопла, отверстия которого должны иметь строго заданное направление (число форсунок две или три при центральном положении выпускного клапана). Три или четыре распыливающих отверстия сопла имеют диаметр 0,95 -1,05 мм. Для увеличения срока службы элементов игла - упор верхняя часть иглы 7 сделана в виде утолщённой головки, а упор 4 - в виде втулки увеличенного диаметра. Упор запрессован в тело корпуса 1. Подъём иглы h и = 1 мм. Развитая головка иглы позволила увеличить диаметр штока 3, передающего игле усилие затяга форсуночной пружины 2 (Р зп), что повысило надёжность узла пружина - шток.

Форсунки Бурмейстер и Вайн охлаждаются, как правило, дизельным топливом автономной системы.

Рис. 6.4.5

В последние годы все высокомощные судовые малооборотные дизели Бурмейстер и Вайн, а также перспективные дизели МАН - Бурмейстер и Вайн оборудуют новыми форсунками унифицированной конструкцией (см. рис. 6.4.5., 6).

Принципиальным отличием в данном случае является то, что форсунка неохлаждаемая. Нормальная работа форсунки при высоких температурах подогрева тяжелого топлива (105-120 °С) обеспечивается благодаря его центральному подводу по каналу 14. При этом получаются симметричное температурное поле и равные градиенты температур по поперечному сечению распылителя, а следовательно, равные рабочие зазоры в сопряженных парах (во всех прочих конструкциях форсунок, где горячее топливо и охладитель подаются по разным сторонам ее корпуса, создается несимметричное температурное поле).

Распылитель состоит из сопла 10, направляющей 8, иглы 7 и запорного клапана 17 внутри иглы. Направление односторонних сопловых отверстий обеспечивается фиксацией сопла штифтом 5, (корпус 1 форсунки фиксируется своим штифтом в месте крепления, не показанном на чертеже). Игла 7, имеющая вверху форму стакана, воспринимает усилие затяга пружины 2 через ползун 13, в вырезы которого входит головка проставки 15 с центральным каналом 14. Внутри стакана иглы размещены пружина 16 запорного клапана 17 и узел сопряжения топливного канала в проставке 15 и в клапане 17. Нижний заплечик проставки 15 ограничивает подъем клапана (h к = 3,5 мм), а верхний - подъем иглы (h и = 1,75 мм).

Форсунка обеспечивает циркуляцию нагретого топлива при неработающем двигателе (во время подготовки к пуску и при вынужденных остановках в море), а также в период между смежными впрысками, когда ролик толкателя плунжера обкатывает цилиндрическую часть шайбы.

При стоянке двигателя, когда ТНВД находится в положении нулевой подачи (полости наполнения и нагнетания соединены), топливоподкачивающий насос при давлении 0,6 МПа подает топливо в нагнетательный топливопровод и канал 14 форсунки. "Гак как пружина 16 запорного клапана 17 имеет затяг 1 МПа, то клапан не поднимается, и топливо проходит через небольшое отверстие 18 в стакан иглы и далее вверх на слив. Таким образом, при стоянке любой продолжительности вся система нагнетания будет заполнена топливом рабочей вязкости. Это исключительно важно для надежной работы топливной аппаратуры.

При работе двигателя в период активного хода плунжера давление нагнетания практически мгновенно поднимает запорный клапан 17, и перепускное отверстие 18 перекрывается. Топливо проходит к дифференциальной площадке иглы 7 и поднимает иглу.

В конце активного хода плунжера вся система нагнетания быстро разгружается через рабочую полость насоса, так как нагнетательного клапана в нем нет. Когда давление топлива падает ниже давления затяга Р ап. пружина 2 сажает иглу 7, а при давлении ниже 1 МПа пружина 16 опускает на место запорный клапан 17. Ролик толкателя плунжера на длительное время выходит на верх шайбы, и система нагнетания вновь прокачивается топливом до следующего активного хода плунжера.

В рассмотренной особенности новой форсунки большое достоинство топливной аппаратуры, так как в любых условиях эксплуатации она постоянно находится в рабочем температурном режиме, что чрезвычайно важно для гарантии надежности.

Практика показала, что во время вынужденных остановок судов в море, при длительных стоянках в готовности, а также при продолжительных режимах малых ходов и маневров тяжелое топливо остывает по всей линии нагнетания, вязкость его повышается. В таких случаях после пуска двигателя или при резких набросах нагрузки давление впрыскивания может сильно возрасти, а гидравлические усилия в линии нагнетания достичь опасного уровня. В результате возможны образование трещин в корпусах ТНВД и стенках нагнетательных топливопроводов, прорыв мест соединений их с насосом и форсункой (особенно когда эти места резьбовые).

Для топливной аппаратуры с охлаждаемыми форсунками существует несколько решений, направленных на поддержание температурного режима системы нагнетания в упомянутых условиях: отключение охлаждения форсунок, подача пара в каналы охлаждения, установка вдоль всего (или части) нагнетательного топливопровода паровых «спутников» и т.д. Однако все эти решения по эффективности действия значительно уступают форсунке с симметричным температурным полем.

Положительным фактором в пользу неохлаждаемых форсунок является и то, что исключается необходимость применять специальную систему охлаждения (два насоса, цистерна, трубопроводы, контрольно-измерительные приборы и приборы автоматики).

Есть, однако, и недостатки. Конструкция форсунки сложная, многодетальная. Одних мест притирки - девять, причем для притирки требуются специальные оправки. В топливной аппаратуре фактически отсутствует нагнетательный клапан, так как запорный клапан 17 его функций не выполняет: в случае зависания иглы форсунки топливо из системы нагнетания выталкивается давлением газов в цилиндре вскоре после окончания активного хода плунжера. Опыт показывает, что цилиндр при этом самовыключается.

Выбор типа главной передачи и главного двигателя будем производит в комплексе. Подбор вариантов главного двигателя будем производить на основе расчетной эффективной мощности. Рассмотрим 3 дизеля:

Характеристики принимаемых ДВС.

Цилиндровая

мощность, кВт

Число ци-

Эффективная

мощность, кВт

Удельный

расход топли-

ва, г/кВтч

оборотов,

«МАН-Бурмейстер

и Вайн S50MC-C»

«МАН-Бурмейстер

«МАН-Бурмейстер

Требуемая мощность одного ГД=кВт

Из таблицы видно, что наименьший удельный расход топлива у «МАН-Бурмейстер и Вайн S60MC», он является малооборотным, что допускает его работу на винт без использования понижающей передачи. Эти показатели увеличивают экономичность двигателя и упрощают процесс эксплуатации.

Подводя итог, принимаем в качестве варианта СЭУ, устанавливаемого на проектируемое судно, СДУ. В качестве главного двигателя и типа передачи принимаем МОД «МАН-Бурмейстер и Вайн» S60MC с прямой передачей и ВФШ. Для обеспечения требуемой мощности необходимо установить два таких двигателя.

Основные характеристики двигателя «МАН-Бурмейстер и Вайн» S60MC

Выбор количества валопроводов и типа движителя

Количество валопроводов выбираем из задания на курсовой проект в соответствии с количеством движителей. Проектируемое судно должно иметь два движителя. В качестве главных используются МОД с прямой передачей, поэтому принимаю решение установить две одновальные СДУ. Такая схема обеспечивает высокую живучесть и маневренные качества. При выборе типа движителя рассматривают преимущества и недостатки каждого из типов, целесообразность его применения на данном судне, первоначальную стоимость судна и эксплуатационные затраты. Установка с ВФШ проще и дешевле, удобнее в обслуживании, наиболее ремонтопригодна, по сравнению с ВРШ. Так же у ВРШ несколько меньший (на 1- 3 %), чем у ВФШ к.п.д. из-за большого диаметра ступицы, в которой размещается механизм поворота. Это определило широкое распространение установок с ВФШ на судах транспортного морского флота с установившимися режимами плавания: нефтеналивных, сухогрузных судах, лесовозах, углерудовозах, транспортных рефрижераторах, судах рыбопромыслового флота.

Применение винта регулируемого шага дает возможность быстрого перехода с переднего на задний ход улучшает маневренные качества судна.

Из выше сказанного следует, что для данного судна целесообразным будет применение ВФШ.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png