Плотность топлива - при +20 "С должна составлять 690…750 кг/м. Плотность бензина со снижением температуры на каждые 10 С возрастает примерно на 1%. От плотности топлива зависит экономичность и тяговитость мотора. Но именно фракционный состав бензина и определяет его плотность.

Итак. Фракционный состав - важнейшая характеристика бензина, не уступающая по значимости октановому числу.

Фракционный состав бензина влияет на пуск и длительность прогрева двигателя после пуска, приемистость двигателя и динамичность автомобиля в целом, полноту сгорания горючего и другие эксплуатационные показатели. Эти свойства бензина оценивают по пяти характерным точкам кривой фракционного состава: Тнк, Т10%, Т50%, Т90%, Ткк. Легкие фракции нужны только на период пуска и прогрева двигателя, в дальнейшем они начинают интенсивно испаряться в топливном баке, бензопроводах. Вместе с жидкостью поступает пар, снижается коэффициент наполнения цилиндров, падает мощность, двигатель перегревается. В топливоподающей системе образуются паровые пробки, возникают перебои в работе, двигатель глохнет. Особенно это часто наблюдается при использовании зимних сортов бензина летом.

В связи с этим количество легкокипящих углеводородов в бензине ограничивают; температура начала кипения для всех сортов бензина должна быть не ниже 35С. Таким образом, температура начала перегонки характеризует наличие в горючем наиболее легких фракций углеводородов, обуславливающих его летучесть, огнеопасность и склонность к образованию паро-воздушных пробок в топливной системе машины.

Температура начала перегонки должна быть не ниже 35 С. Температура перегонки 10% характеризует пусковые качества бензина и его склонность к образованию паро-воздушных пробок в системе питания двигателя.Чем ниже температура перегонки 10% бензина, тем лучше его пусковые свойства, но тем больше опасность появления паровых пробок в системе питания и обледенения карбюратора. Для пуска холодного двигателя необходимо, чтобы 10 % бензина выкипало при температуре не выше 55°С (зимний сорт) и 70°С (летний). Если же зимой, в мороз, вам достанется топливо, в котором из-за дрянного хранения легкие фракции улетучились, то двигатель может и не "схватить".

Температура перегонки 50% бензина характеризует его среднюю испаряемость, прогрев, устойчивость работы двигателя. Чем ниже температура перегонки 50% бензина, тем выше его испаряемость, лучше приемистость и устойчивость работы двигателя на этом бензине. Основную часть топлива называют рабочей фракцией.

От испаряемости рабочей фракции зависят образование горючей смеси при разных режимах работы двигателя, продолжительность прогрева (перевода с холостого хода под нагрузку), приемистость (возможность быстрого перевода с одного режима на другой). По стандарту рабочую фракцию нормируют 50% точкой. Чем она ниже, тем однороднее состав топлива и горючей смеси по отдельным цилиндрам, устойчивее работает двигатель, лучше приемистость.

Температура перегонки 90% бензина характеризует наличие тяжелых, трудно испаряющихся фракций. С повышением данной температуры увеличивается расход бензина, так как тяжелые фракции не успевают испариться и сгореть, больше бензина проникает в картер, смывая масло со стенок цилиндра и разжижая масло, что ведет к износу деталей и повышенному расходу масла. Тяжелые углеводороды (от 90 % до конца кипения) в топливе нежелательны. Чем меньше интервал температуры от 90 % до конца кипения, тем выше качество топлива, меньше его склонность к конденсации, лучше экономичность и ниже темп изнашивания деталей двигателя. Температура выкипания 90 % топлива характеризует так же его склонность к конденсации, которую часто называют точкой росы.

Таблица5 Средние компонентные составы автомобильных бензинов

Компонент

Бензин каталитического риформинга:

Мягкого режима

Жесткого режима

Ксилольная фракция

Бензин каталитического крекинга

Бензин прямой перегонки

Алкилбензин

Бутаны изопентан

Газовый бензин

Бензин коксования

Гидростабилизированный _асзин пиролиза

· - Этилированный

Давление насыщенных паров - где-то этот показатель перекликается с предыдущим. При испарении топлива в замкнутом пространстве одновременно происходит конденсация паров. Чем выше их давление, тем интенсивнее процесс конденсации. Давление, которое оказывают пары испаряющегося бензина на стенки емкости, называют упругостью паров. Упругость (или давление) паров бензина зависит от его химического и фракционного состава. Как правило, чем больше в топливе содержится легкокипящих углеводородов, тем выше упругость паров. Она возрастает также при повышении температуры. Определяют давление паров (ГОСТ 1756--83), выдерживая испытуемый бензин 20 мин в герметичном резервуаре при 38 °С. По прошествии данного времени по манометру фиксируют давление паров бензина.

Использование бензина с высокой упругостью паров приводит к повышенному образованию паровых пробок в топливоподающей системе, снижению наполнения цилиндров, падению мощности. В летних сортах давление насыщенных паров не должно быть больше 0,066 Мпа (500 мм рг. Ст.). Зимние сорта бензинов для облегчения пуска двигателя в холодное время года имеют большее давление - 0.066…0.093 Мпа (500…700 мм рт. Ст.).

Содержание фактических смол - еще один важный показатель топлива. Смолы -- это темно-коричневые жидкие или полужидкие вещества с плотностью около 1000 кг/м3, молекулярной массой 350…900, обладают сильной красящей способностью, легко растворимы во всех нефтепродуктах и органических растворителях (кроме ацетона и спирта). Смолистые и смолообразующие вещества всегда содержатся в бензине. Их количество зависит от технологии получения, способа очистки, длительности и условий хранения топлива.

Содержащиеся в бензине тяжелые молекулы углеводородов, входящие в состав смол, не могут испариться, они накапливаются на горячих стенках трубопроводов, забивают жиклеры. Значительное накопление смолистых веществ приводит к уменьшению проходных сечений различных участков топливоподающей аппаратуры, всасывающего коллектора. Все это снижает мощность и ухудшает экономичность двигателя.

В зоне высокой температуры (клапаны, днище поршня, камера сгорания, поршневые канавки) смолистые отложения постепенно уплотняются, частично выгорают, образуют хрупкие и твердые нагары, которые в основном состоят из углерода. При большом накоплении нагаров в двигателе повышается износ, ухудшается процесс сгорания, увеличивается расход топлива.

Стандартом нормируют количество фактических смол, т.е. соединений, которые находятся в бензине в момент определения. Сущность определения (ГОСТ 1567-83) заключается в испарении горячим воздухом 25 мл топлива при температуре 150 °С. Остаток после испарения в миллиграммах на 100 мл топлива показывает количество фактических смол. Для бензина различных марок их содержание не должно превышать 7…15 мг/100 мл.

Если содержание фактических смол отвечает требованиям стандарта, то двигатели длительное время работают без повышенного смоло- и нагарообразования. Нередко же при эксплуатации техники содержание смол в топливе значительно выше. Если содержание фактических смол в 2…3 раза больше нормы, то моторесурс двигателя снижается на 20…25 %. Кроме этого, при эксплуатации возникают различные неполадки: зависают клапаны, закоксовываются кольца.

Процесс смолообразования зависит также от технического состояния и условий эксплуатации двигателей. Все примеси, которые попадают в двигатель с поступающим для сгорания воздухом, находятся в масле и топливе, а, кроме того, продукты износа деталей могут участвовать в образовании отложений.

Индукционный период - показатель, который говорит нам, насколько долго бензин может сохранять свой состав и параметры неизменными. Иначе говоря, индукционный период характеризует стабильность бензина. Дело в том, что кроме фактических смол, в бензине содержатся смолообразующие вещества, - так называемые потенциальные смолы, которые становятся фактическими в процессе хранения, когда подвергаются воздействию кислорода. Основное влияние на накопление смол оказывает температура хранения (табл. 1). Кроме того, существенное значение имеет степень заполнения емкости. Так, у автомобильного бензина, хранившегося 6 месяцев в полной (заполнение 93 %) бочке, содержание фактических смол возросло в 4 раза, а при заполнении 50 % -- в 12 раз. Наличие в емкостях старых продуктов окисления, воды, механических примесей, окалины интенсифицирует процессы окисления и накопления смол. Определяют индукционный период в лабораторной установке при искусственном окислении бензина (температура 100 С, в атмосфере чистого кислорода при давлении 0,7 Мпа). При окислении давление кислорода, который тратится на образование смол и кислот, резко снижается. Индукционным периодом называют время в минутах от начала искусственного окисления бензина до активного поглощения им кислорода. Для различных марок бензина индукционный период составляет 600-1200 минут. Конечно, это не значит, что за такой период топливо в реальных условиях "скиснет" - так быстро не скиснет даже молоко. Но приблизительно можно сказать, что для качественного бензина с индукционным периодом 1200 минут срок хранения составит 1,5-2 года.

Увы, многие автомобилисты, выкручивая или меняя свечи, видят на изоляторе устойчивый красный налет. Это как раз и говорит о том, что в наших высокооктановых бензинах довольно много ферросодержащих присадок. Применение их, согласно ГОСТа допустимо, но в концентрации не более 37мг на литр. А проверить фактическое значение простому автовладельцу, к сожалению, невозможно.

Если же цвет изолятора ваших свечей от светло серого до золотистого - вас можно поздравить - вы заправляетесь бензином, не содержащих ферроценов и марганцевых присадок. К тому же, можно сказать, и двигатель у вас в хорошем состоянии.

1. Эксплуатационные : октановое число; фракционный состав; давление насыщенных паров; индукционный период; концентрация фактических смол; кислотность.

Октановое числопоказатель детонационной стойкости бензина, численно равный объемной доле изооктана в смеси с н- гептаном, эквивалентной по своей детонационной стойкости бензину, испытываемому в стандартных условиях. Например, бензин А-95 обладает такой же детонационной стойкостью, как смесь 95 % изооктана и 5 % н- гептана.

Октановое число характеризует процесс сгорания его в двигателе: нормальный или детонационный (взрывной).

Фракционный состав – показатель испаряемости бензина:

Температура перегонки 10 % характеризует пусковые качества бензина и его способность к образованию паровых пробок.

Температура перегонки 50 % характеризует скорость прогрева двигателя, устойчивость его работы на малых оборотах и приемистость.

Температура перегонки 90 % и конца кипения характеризуют наличие в бензине тяжелых фракций, которые не успевают испариться во впускном трубопроводе и доиспаряются в цилиндрах двигателя.

Давленые насыщенных паров – характеризует пусковые свойства бензина, склонность к образованию в топливной системе двигателя паровых пробок, возможные потери от испарения.

Индукционный период – характеризует стойкость бензина против окисления и оценивается временем, в течение которого бензин практически не окисляется в среде кислорода. Пригодным для длительного хранения является бензин, индукционный период которого не менее 500 минут.

Концентрация фактических смол – характеризует смоло- и нагарообразование в двигателе.

Кислотность – характеризует содержание продуктов окисления, к моменту определения, т.е. «запас качества» по сравнению с требованиями нормы стандарта.

2. Экологические: массовая доля общей серы; содержание ароматических углеводородов, бензола; массовая доля кислорода; содержание кислородосодержащих соединений.

Влияние изменений показателей качества бензинов на работу двигателя

Наименование показателя качества Характер изменения показателя Признаки нарушения в работе двигателя. Ожидаемые последствия
Октановое число Уменьшение Металлический стук, дымный выхлоп. Детонационное сгорание. Падение мощности.
Увеличение Возрастает температура и давление в камере сгорания. Увеличивается мощность. Возможность форсирования рабочего процесса без снижения надежности работы.
Фракционный состав: Температура: начала кипения, перегонки 10 % Повышение Увеличивается время запуска (зимой). Повышенный износ.
Понижение Уменьшается время запуска (зимой). Увеличивается вероятность образования паровых пробок (летом). Нарушения в подаче топлива. Перебои в работе.
Температура перегонки 50% Повышение Увеличивается время прогрева. Неустойчивая работа на малых оборотах. Ухудшается приемистость.
Понижение Уменьшается время прогрева. Улучшается приемистость.
Температура перегонки 90% и конца кипения Повышение Снижается полнота сгорания. Дымный выхлоп. Падение мощности. Повышенный расход топлива. Повышенный износ ЦПГ. Увеличение отложений.
Понижение Условия сгорания топлива улучшаются. Отрицательное воздействие тяжелых фракций уменьшается.
Давление насыщенных паров Понижение Уменьшается вероятность образования паровых пробок (летом). Ухудшается запуск двигателя (зимой).
Повышение Увеличивается вероятность образования паровых пробок. Перебой в работе и подаче топлива (лето). Увеличивается испаряемость.
Содержание серы Выше нормы Повышенный коррозионный износ. Снижение надежности в работе. Ухудшается экология.
Массовая доля высокооктановых компонентов: бензола, МТБЭ Выше нормы Снижается теплота сгорания АВ. Падает мощность двигателя. Повышается агрессивность АВ по отношению к резинам. Повышается склонность к образованию отложений, токсичность АБ и отработанных газов при повышении содержания ароматических углеводородов, особенно бензола.
Плотность Ниже нормы Снижается объемная энергоемкость АВ. Уменьшается содержание в АВ тяжелых углеводородов. Топливо проявляет тенденцию к облегчению фракционного состава.
Выше нормы Повышается объемная энергоемкость АВ. Повышается содержание в АБ тяжелых углеводородов. Топливо проявляет тенденцию к утяжелению фракционного состава.

Динамика изменения требований Европейских стандартов свидетельствует о снижении в АБ содержания бензола, серы, ароматических и олефиновых компонентов.

В связи с расширением применения двух новых кондуктометрических приборов -Рансимат (Rancimat) и OSI (Oxidative Stability Instrument — аппарат для измерени устойчивости к окислению) в качестве альтернативы определения устойчивости с использованием МАК" AOCS выступило инициатором проведения совместного исследования кондуктометрических методов для выявления возможности их принятия в качестве официальной альтернативы. По результатам исследования метод AOCS Cd \2b-92 «Определение индекса устойчивости масла к окислению» (Од Stability Index — OSI) в 1996 г. был утвержден в качестве официального , что снижает достоверность получаемых результатов по ГОСТ 6994-74.

Поэтому авторы, для того чтобы исключить влияние на реакцию взаимодействия всей группы ароматических, а также частично парафинонафтеновых углеводородов, используют серную кислоту с концентрацией 97-98% и добавляют ее порционно с небольшой скоростью при постоянном перемешивании.

Кроме того, известно, что нестабильные углеводороды в топливе представлены не только непредельными углеводородами, но и смолистыми соединениями, азот- и серусодержащими углеводородами. Поэтому при проведении экспериментов по разработке способа определения длительности индукционного периода бензинов авторы используют совокупность показателей: йодное число и скорость окисления нестабильных углеводородов при взаимодействии с 97-98%-ной серной кислотой, что дает наиболее точные результаты. Так как взаимодействие пробы с серной кислотой в заявляемом способе происходит при постоянном перемешивании, то возникла необходимость учета самопроизвольного нагрева пробы бензина при перемешивании (без серной кислоты). Был экспериментально определен коэффициент нагрева пробы в холостых опытах, и он равен 0,03. Скорость подачи кислоты была выбрана равной 1,2 см 3 /мин, скорость перемешивания на магнитной мешалке 860 об/мин.

Значение постоянных А и В было найдено по зависимости длительности индукционного периода от переменной X

переменная х, включающая в себя такие измеряемые параметры, как начальная температура пробы (Т о), конечная температура пробы (Т к), время подачи кислоты (t), йодное число пробы (I), а также постоянные величины - температурный коэффициент, равный 0,03, скорость добавления кислоты в пробу ν=1,2 см 3 /мин.

Значение А определено равным 2550, В - 218.

Способ осуществлялся следующим образом.

Пример. Отбирают 100 см 3 бензина каталитического крекинга (образец №5). Определяют по ГОСТ 2070-82 йодное число данного образца, для этого образца I=52,3. Помещают пробу в термоячейку, перед подачей первой порции серной кислоты замеряют время и температуру (Т о =18,7°С), при непрерывном перемешивании добавляют со скоростью 1,2 см 3 /мин серную кислоту. При стабилизации температуры в течении 1-2 мин, прекращают подачу серной кислоты и фиксируют температуру смеси и принимают ее за температуру окончания окисления (Т к =28,9°С). Определяют отрезок времени от начала подачи кислоты до окончания окисления (t=7 мин). Рассчитывают по формуле (2) значение Х 5 =0,023 и затем по формуле (3) длительность индукционного периода расчетную (ИПР=276).

Заявляемым способом были испытаны образцы:

№1 - Бензин каталитического риформинга

№2 - Бензин термического крекинга

№3 - Бензин неэтилированный марки Регуляр-92

№4 - Бензин каталитического риформинга

№5 - Бензин каталитического крекинга

№6 - Гидрированная фракция C 5 -C 9

№7 - Смесовой бензин из стабилизированных и нестабилизированных фракций

№8 - Газовый стабильный бензин

Кроме того, образец 7 был испытан при концентрации серной кислоты 96% и 99%.

Результаты испытаний образцов представлены в таблице.

Таблица

Результаты испытаний образцов заявляемым способом*

Образец Измеряемые величины Задаваемые величины Расчетные величины
Температура окончания окисления Т к, °С Температура начала окисления Т о, °С t, мин Йодное число С кис-ты, % X i ИПР заявляемым способом ИП по прототипу (ГОСТ)
1 2 3 4 5 6 7 10 11
№1 19,4 16,9 4,73 1,62 97,0 0,260 880 870
№2 21,7 20,1 11,5 1,78 98,0 0,051 347 281
№3 42,9 20,0 7,75 39,43 97,5 0,062 375 441
№4 39,5 20,1 1,75 44,8 97,8 0,206 742 784
№5 28,9 18,7 7,0 52,33 97,5 0,023 276 233
№6 47,5 19,7 14,5 69,3 97,8 0,023 276 324
№7 47,2 20,75 8,5 63,79 98,0 0,040 319 314
№8 20,9 20,5 2,75 0,44 97,5 0,220 778 758
№9** 32,2 18,8 2,0 63,79 96,0 0,087 439 314
№10** 34,2 20,75 15,5 63,79 99,0 0,011 245 314
* - длительность индукционного периода , где: А=2550, В=218, постоянная скорость подачи кислоты в пробу ν=1,2 см 3 /мин;

** - испытания, проводившиеся в условиях, выходящих за границы параметров заявляемого способа

Из результатов испытаний образцов, приведенных в таблице, можно видеть, что как увеличение концентрации кислоты выше 98,0%, так и понижение концентрации кислоты ниже 97,0% приводит к недостоверным результатам определения. Таким образом, исследования показали, что этот способ позволяет достоверно определить индукционный период в бензинах при использовании серной кислоты с концентрацией от 97,0% до 98,0%. Время определения, затраченное на одну пробу, составляет не более 25 минут по сравнению с временем определения по прототипу, где время определения составляет не менее 3-4 часов для наиболее нестабильных бензинов (ИП=230) и более 20 часов для стабильных бензинов (ИП=1200).

Расчет коэффициентов А и В

На чертеже приведена зависимость индукционного периода (Y) от переменной X,

Как видно из полученных данных, зависимость индукционного периода от расчетной величины X имеет явную прямолинейную зависимость, выраженную уравнением

В полученном уравнении A=2550 и B=218, если подставить эти значения в уравнение 2, то по полученным экспериментально данным (T 0 , T к, t, I) получим результаты индукционного периода, расчетного для данного образца пробы.

Способ определения длительности индукционного периода бензинов, включающий отбор пробы, создание условий окисления нестабильных углеводородов пробы и последующую оценку индукционного периода по расчетной зависимости, отличающийся тем, что дополнительно определяют йодное число анализируемой пробы, задают температурный коэффициент самопроизвольного нагрева пробы при перемешивании, окисление нестабильных углеводородов осуществляют путем порционного добавления при комнатной температуре 97,0-98,0% серной кислоты с постоянной скоростью при постоянном перемешивании, при этом перед подачей первой порции серной кислоты фиксируют время и температуру пробы, которую принимают за температуру начала окисления пробы, подачу кислоты прекращают после стабилизации температуры смеси, которую принимают за температуру окончания окисления нестабильных углеводородов пробы, замеряют отрезок времени от начала добавления кислоты до момента окончания ее подачи, а длительность индукционного периода рассчитывают по следующей зависимости.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png