Появление цифровых шин в автомобилях произошло позднее, чем в них начали широко внедряться электронные блоки. В то время цифровой «выход» им был нужен только для «общения» с диагностическим оборудованием – для этого хватало низкоскоростных последовательных интерфейсов наподобие ISO 9141-2 (K-Line). Однако кажущееся усложнение бортовой электроники с переходом на CAN-архитектуру стало ее упрощением.

Действительно, зачем иметь отдельный датчик скорости, если блок АБС уже имеет информацию о скорости вращения каждого колеса? Достаточно передавать эту информацию на приборную панель и в блок управления двигателем. Для систем безопасности это ещё важнее: так, контроллер подушек безопасности уже становится способен самостоятельно заглушить мотор при столкновении, послав соответствующую команду на ЭБУ двигателя, и обесточить максимум бортовых цепей, передав команду на блок управления питанием. Раньше же приходилось для безопасности применять не надежные меры вроде инерционных выключателей и пиропатронов на клемме аккумулятора (владельцы BMW с его «глюками» уже хорошо знакомы).

Однако на старых принципах реализовать полноценное «общение» блоков управления было невозможно. На порядок выросли объем данных и их важность, то есть потребовалась шина, которая не только способна работать с высокой скоростью и защищена от помех, но и обеспечивает минимальные задержки при передаче. Для движущейся на высокой скорости машины даже миллисекунды уже могут играть критичную роль. Решение, удовлетворяющее таким запросам, уже существовало в промышленности – речь идет о CAN BUS (Controller Area Network).

Суть CAN-шины

Цифровая CAN-шина – это не конкретный физический протокол. Принцип работы CAN-шины, разработанный Bosch еще в восьмидесятых годах, позволяет реализовать ее с любым типом передачи – хоть по проводам, хоть по оптоволокну, хоть по радиоканалу. КАН-шина работает с аппаратной поддержкой приоритетов блоков и возможностью «более важному» перебивать передачу «менее важного».

Для этого введено понятие доминантного и рецессивного битов: упрощенно говоря, протокол CAN позволит любому блоку в нужный момент выйти на связь, остановив передачу данных от менее важных систем простой передачей доминантного бита во время наличия на шине рецессивного. Это происходит чисто физически – например, если «плюс» на проводе означает «единицу» (доминантный бит), а отсутствие сигнала – «ноль» (рецессивный бит), то передача «единицы» однозначно подавит «ноль».

Представьте себе класс в начале урока. Ученики (контроллеры низкого приоритета) спокойно переговариваются между собой. Но, стоит учителю (контроллеру высокого приоритета) громко дать команду «Тишина в классе!», перекрывая шум в классе (доминантный бит подавил рецессивный), как передача данных между контроллерами-учениками прекращается. В отличие от школьного класса, в CAN-шине это правило работает на постоянной основе.

Для чего это нужно? Чтобы важные данные были переданы с минимумом задержек даже ценой того, что маловажные данные не будут переданы на шину (это отличает CAN шину от знакомого всем по компьютерам Ethernet). В случае аварии возможность ЭБУ впрыска получить информацию об этом от контроллера SRS несоизмеримо важнее, чем приборной панели получить очередной пакет данных о скорости движения.

В современных автомобилях уже стало нормой физическое разграничение низкого и высокого приоритетов. В них используются две и даже более физические шины низкой и высокой скорости – обычно это «моторная» CAN-шина и «кузовная», потоки данных между ними не пересекаются. К всем сразу подключен только контроллер CAN-шины, который дает возможность «общаться» со всеми блоками через один разъем.

Например, техническая документация Volkswagen определяет три типа применяемых CAN-шин:

  • «Быстрая» шина, работающая на скорости 500 килобит в секунду, объединяет блоки управления двигателем, ABS, SRS и трансмиссией.
  • «Медленная» функционирует на скорости 100 кбит/с и объединяет блоки системы «Комфорт» (центральный замок, стеклоподъемники и так далее).
  • Третья работает на той же скорости, но передает информацию только между навигацией, встроенным телефоном и так далее. На старых машинах (например, Golf IV) информационная шина и шина «комфорт» были объединены физически.

Интересный факт : на Renault Logan второго поколения и его «соплатформенниках» также физически две шины, но вторая соединяет исключительно мультимедийную систему с CAN-контроллером, на второй одновременно присутствуют и ЭБУ двигателя, и контроллер ABS, и подушки безопасности, и ЦЭКБС.

Физически же автомобили с CAN-шиной используют ее в виде витой дифференциальной пары: в ней оба провода служат для передачи единственного сигнала, который определяется как разница напряжений на обоих проводах. Это нужно для простой и надежной помехозащиты. Неэкранированный провод работает, как антенна, то есть источник радиопомех способен навести в нем электродвижущую силу, достаточную для того, чтобы помеха воспринялась контроллерами как реально переданный бит информации.

Но в витой паре на обоих проводах значение ЭДС помехи будет одинаковым, так что разница напряжений останется неизменной. Поэтому, чтобы найти CAN-шину в автомобиле, ищите витую пару проводов – главное не перепутать ее с проводкой датчиков ABS, которые так же для защиты от помех прокладываются внутри машины витой парой.

Диагностический разъем CAN-шины не стали придумывать заново: провода вывели на свободные пины уже стандартизированной в колодки, в ней CAN-шина находится на контактах 6 (CAN-H) и 14 (CAN-L).

Поскольку CAN-шин на автомобиле может быть несколько, часто практикуется использование на каждой разных физических уровней сигналов. Вновь для примера обратимся к документации Volkswagen. Так выглядит передача данных в моторной шине:

Когда на шине не передаются данные или передается рецессивный бит, на обоих проводах витой пары вольтметр покажет по 2,5 В относительно «массы» (разница сигналов равна нулю). В момент передачи доминантного бита на проводе CAN-High напряжение поднимается до 3,5 В, в то время как на CAN-Low опускается до полутора. Разница в 2 вольта и означает «единицу».

На шине «Комфорт» все выглядит иначе:

Здесь «ноль» — это, наоборот, 5 вольт разницы, причем напряжение на проводе Low выше, чем на проводе High. «Единица» же – это изменение разности напряжений до 2,2 В.

Проверка CAN-шины на физическом уровне ведется с помощью осциллографа, позволяющего увидеть реальное прохождение сигналов по витой паре: обычным тестером, естественно, «разглядеть» чередование импульсов такой длины невозможно.

«Расшифровка» CAN-шины автомобиля также ведется специализированным прибором – анализатором. Он позволяет выводить пакеты данных с шины в том виде, как они передаются.

Сами понимаете, что диагностика шины CAN на «любительском» уровне без соответствующего оборудования и знаний не имеет смысла, да и банально невозможна. Максимум, что можно сделать «подручными» средствами, чтобы проверить кан-шину – это измерить напряжения и сопротивление на проводах, сравнив их с эталонными для конкретного автомобиля и конкретной шины. Это важно – выше мы специально привели пример того, что даже на одном автомобиле между шинами может быть серьезная разница.

Неисправности

Хотя интерфейс CAN и хорошо защищен от помех, электрические неисправности стали для него серьезной проблемой. Объединение блоков в единую сеть сделало ее уязвимой. КАН-интерфейс на автомобилях стал настоящим кошмаром малоквалифицированных автоэлектриков уже по одной своей особенности: сильные скачки напряжения (например, зимний ) способны не только «повесить» ошибку CAN-шины, обнаруживаемую , но и заполнить память контроллеров спорадическими ошибками, случайного характера.

В результате на приборной панели загорается целая «гирлянда» индикаторов. И, пока новичок в шоке будет чесать голову: «да что же это такое?», грамотный диагност первым делом поставит нормальный аккумулятор.

Чисто электрические проблемы – это обрывы проводов шины, их замыкания на «массу» или «плюс». Принцип дифференциальной передачи при обрыве любого из проводов или «неправильном» сигнале на нем становится нереализуем. Страшнее всего замыкание провода, поскольку оно «парализует» всю шину.

Представьте себе простую моторную шину в виде провода, на котором «сидят в ряд» несколько блоков – контроллер двигателя, контроллер АБС, приборная панель и диагностический разъем. Обрыв у разъема автомобилю не страшен – все блоки продолжат передавать информацию друг другу в штатном режиме, невозможной станет только диагностика. Если оборвать провод между контроллером АБС и панелью, мы сможем увидеть сканером на шине только ее, ни скорость, ни обороты двигателя она показывать не будет.

А вот при обрыве между ЭБУ двигателя и АБС машина, скорее всего, уже не заведется: блок, не «видя» нужный ему контроллер (информация о скорости учитывается при расчете времени впрыска и угла опережения зажигания), уйдет в аварийный режим.

Если не резать провода, а просто постоянно подать на один из них «плюс» или «массу», автомобиль «уйдет в нокаут», поскольку ни один из блоков не сможет передавать данные другому. Поэтому золотое правило автоэлектрика в переводе на русский цензурный звучит как «не лезь кривыми руками в шину», а ряд автопроизводителей запрещает подключать к CAN-шине несертифицированные дополнительные устройства стороннего производства (например, сигнализации).

Благо подключение CAN-шины сигнализации не разъем в разъем, а врезаясь непосредственно в шину автомобиля, дают «криворукому» установщику возможность перепутать провода местами. Автомобиль после этого не то что откажется заводиться – при наличии контроллера управления бортовыми цепями, распределяющего питание, даже зажигание не факт что включится.

В данной статье не будем полностью расписывать CAN протокол, а обратим внимание лишь на вещи, которые надо обязательно знать и понимать для использования или разработки электронных устройств с поддержкой CAN.

Протокол CAN был разработан для автомобильной промышленности и впоследствии стал стандартом в области создания бортовых сетей автомобилей, железнодорожного транспорта и т.д. CAN позволяет создавать сети с развитыми средствами контроля ошибок, скоростью передачи до 1Мбит/с и пакетами содержащими не более восьми байтов данных.

Канальный и физический уровни CAN

В протоколе CAN нет строгого определения физического уровня, поэтому для передачи сообщений может использоваться, например, витая пара или оптоволокно. По сути дела CAN реализует канальный уровень, т.е. осуществляет формирование пакетов сообщений, ограничение распространения ошибок, подтверждение приема и арбитража. Есть конечно и распространенные стандарты прикладного уровня например CANopen, но если нет необходимости обеспечивать взаимодействие между оборудованием различных производителей, то лучше использовать внутренний протокол.

Структура узла сети CAN

Рассматриваемый нами узел сети CAN состоит из микроконтроллера, CAN контроллера и приемопередатчика (рисунок 1). Чаще всего мы используем микроконтроллеры с встроенным CAN контроллером для упрощения схемы, но иногда используется автономный контроллер CAN с интерфейсом SPI (MCP2510). Далее приемопередатчик подключается к витой паре, на концах которой размещены согласующие резисторы (терминатор) с сопротивлением 120 Ом.

Рисунок 1 – Узел сети CAN

Для формирования логической единицы в витой паре, или свободной шине, на оба провода подается напряжение, равное половине разности напряжения между 0 или Vcc. Логическому нулю соответствует подача на провода линии дифференциального напряжения (рисунок 2).




Рисунок 2 – Логические уровни на CAN-шине

Шина CAN позволяет передавать данные со скоростью 1 Мбит/c при длине кабеля не более 40 м. В обучающей литературе написано, что при снижении скорости передачи до 10кбит/с можно добиться длины сети в 1.5км.

Пакет сообщения CAN

Формат сообщения CAN показан на рисунке 3.




Рисунок 3 – Пакет сообщения CAN

По факту пакет сообщения формируется CAN контроллером, а прикладное ПО только устанавливает идентификатор сообщения, длину сообщения и предоставляет байты данных, поэтому полностью рассматривать пакет не будем, а посмотрим на данные которые мы изменяем при работе с CAN шиной.

Идентификатор сообщения используется для идентификации данных, отправленных в этом пакете. Каждое отправленное сообщение принимается всеми узлами сети и в данном случае идентификатор позволяет понять конкретному устройству, необходимо ли обрабатывать данное сообщение. Максимальная длина сообщения 8 байт, но можно уменьшить это значение для сохранения пропускной способности шины CAN. Для примера ниже по тексту есть несколько скриншотов CAN сообщений из автомобильной сети.

Арбитраж на шине CAN

Если без подробностей, то первым по шине CAN всегда передается сообщение с наименьшим идентификатором.

Настройка скорости передачи данных по шине CAN

Скорость передачи данных по CAN шине настраивается за счет формирования квантов времени, а не как во многих других протоколах последовательной передачи данных за счет делителя скорости. В большинстве случаев используются скорости 10Кбит/c, 20Кбит/c, 50Кбит/c, 100Кбит/c, 125Кбит/c, 500Кбит/c, 800Кбит/c, 1MBaud и настройки для этих скоростей уже посчитаны. На рисунке 4 изображено окно выбора скорости в программе PcanView.



Рисунок 4 – Выбор скорости передачи данных в программе PcanView

Как мы видим при установке стандартной скорости настройки проставляются автоматически, но бывают случаи когда необходимо использовать другую скорость передачи данных. Например бортовой CAN автомобиля может работать со скоростью 83Кбит/c. В этом случае придется провести расчет настроек самостоятельно или поискать специализированный калькулятор скорости в интернете. Для самостоятельного расчета скорости необходимо понимать, что для передачи одного бита сообщения используется несколько квантов, а интервал передачи состоит из трех сегментов (рисунок 5).




Рисунок 5 – Время передачи одного бита

Первый сегмент всегда фиксирован и равняется одному кванту. Далее идет два сегмента Tseg1 и Tseg2 и количество квантов в каждом сегменте определяется пользователем и может быть равно от 8 до 25. Точка выборки находится между Tseg1 и Tseg2, т.е. в конце первого и в начале второго сегмента. Так же пользователь может определить ширину скачка синхронизации (Synchronization Jump Width - SJW) для подстройки битовой скорости принимающего устройства, который может быть в диапазоне 1 – 4 квантов времени.

Теперь приведем формулу расчета скорости (Пример расчета скорости для CAN контроллера SJA1000):

BTR = Pclk/(BRP * (1 + Tseg1 + Tseg2))

BTR – скорость передачи данных,

Pclk – частота работы CAN контроллера,

BRP – значение предделителя частоты генератора скорости передачи

Tseg1 – первый сегмент

Tseg2 – Второй сегмент

Для проверки возьмем уже посчитанную скорость 125Кбит/c и попробуем получить настройки вручную. Pclk возьмем 16 МГц.

BRP = 16МГц /(125K * (1 + Tseg1 + Tseg2))

Затем подбираем интервал передачи бита находящийся в диапазоне от 8 до 25 квантов времени, так что бы получилось целое значение BRP. В нашем случае если взять (1 + Tseg1 + Tseg2) = 16, то BRP будет равен 30.

SP = ((1 + Tseg1 + Tseg2) * 70)/100

Подставляем значения и получаем 16 * 0.7 = 11.2, что соответствует соотношению Tseg1 = 10, Tseg2 = 5, т.е. 1 + 10 + 5 = 16. Далее смотрим если Tseg2 >= 5, то SJW = 4, если Tseg2 < 5, то SJW = (Tseg2 – 1). В нашем случае SJW = 4.

Итого для получения скорости 125Кбит/c необходимо в параметрах указать, BRP = 30, Tseg1 = 10, Tseg2 = 5, SJW = 4.

P.S. Конфигурирование baud rate значительно отличается между старыми модулями USB-CANmodul (GW-001 и GW-002) с контроллером SJA1000 и новыми модулями sysWORXX с контроллером AT91SAM7A3. В статье описывающей работу с бортовым CAN автомобиля на скорости 83кбит/c приведен расчет скорости для контроллера AT91SAM7A3.


Пример получения и передачи данных по CAN-интерфейсу

В примере будем использовать CAN-адаптер с программой PcanView от SYSTEC и подключимся к салонному CAN автомобиля, работающему со скоростью 125Кбит/с. Рассматриваемый нами автомобиль оснащен креслами с электроприводом и поэтому исследуем данные отвечающие за положение кресел и постараемся изменить положение спинки подменив пакет с помощью компьютера.

Для начала на схеме автомобиля находим наиболее удобно расположенный разъем с линиями CANH и CANL и подключаем к нему наш адаптер. Если разъем и провода найти не получилось, то можно подлезть к блоку управления кресла, найти там два скрученных между собой провода и аккуратно надрезав провода подключить адаптер. Если после подключения и настройки адаптера сообщения не приходят, то в первую очередь попробуйте поменять между собой CANH CANL и проверить включено ли зажигание.
Далее запускаем программу PcanView, в открывшемся окне настроек устанавливаем Baudrate = 125Кбит/c и нажимаем ОК (рисунок 4). В следующем окне устанавливаем Message filter = Standard, диапазон адресов от 000 до 7FF и нажимаем ОК (рисунок 6).



Рисунок 6 – Настройка CAN фильтра

Если все сделано правильно, то мы увидим сообщения от кресел (рисунок 7), а при нажатии кнопки наклона спинки на пульте управления мы увидим еще одно сообщение с адресом 1F4 идущее от пульта к креслу (рисунок 8).



Рисунок 7 – CAN сообщения от кресла с электроприводом


Рисунок 8 – CAN сообщения от кресла с электроприводом и сообщение от пульта управления к креслу

Теперь мы знаем какие должны быть адрес, длина и данные в CAN пакете для имитации нажатия кнопки изменения положения спинки. Во вкладке Transmit нажимаем NEW и в открывшемся окне создаем копию пакета 1F4, т.е. ID = 1F4, Length = 3, Data = 40 80 00. Period можно оставить 0 ms, тогда сообщения будут отправляться по факту нажатия кнопки пробел (рисунок 9).



Рисунок 9 – Создание CAN сообщения

На рисунке 10 отображено поле Transmit главного окна содержащее все отправляемые сообщения в CAN и информацию о них. При выделении сообщения и нажатии кнопки пробел произойдет отправка пакета в CAN сеть и кресло немного сдвинется в нужном направлении.



Понятное дело, что добиться полноценного управления креслом в таком случае не получиться, т.к. мы не можем исключить из сети пакеты заводского пульта управления, но эта проблема вполне решаема.

Итог

Мы увидели как при определенных усилиях и навыках можно создавать собственные электронные системы с использованием высокотехнологичного протокола CAN и как можно подключаться, исследовать и управлять устройствами подключенными к автомобильной CAN шине.

  • 14. Стоянки для автомобилей. Запуск двигателя автомобиля в зимний период на открытых стоянках.
  • 15. Методы организации производства то и тр. Управление производством то и тр. Структура управления технической службой сто.
  • 16. Задачи службы материально-технического обеспечения предприятий автосервиса. Группы запасных частей, определяющих степень спроса.
  • 17. Сущность физического и морального старения автомобиля.
  • 18. Изменение эксплуатационных показателей автомобилей при старении
  • 19. Устройства обзорности и световые приборы. Их влияние на безопасность дорожного движения.
  • 20. Активная и пассивная безопасность автомобиля и их факторы Изменение безопасности эксплуатации автомобиля по мере его старения.
  • Вопросы к экзамену по дисциплине «Производственно-техническая инфраструктура предприятий автомобильного сервиса» (птипас).
  • 1. Общая характеристика технологического оснащения. Классификация технического оборудования.
  • 2. Производительность технологического оборудования. Эффективность машинного технологического процесса и эксплуатация оборудования.
  • 3. Характеристика загрязнений автомобиля. Требования для мойки автомобилей
  • 4. Оборудование для мойки автомобилей. Способы мойки автомобилей. Требования к оборудованию для мойки автомобилей.
  • 5. Классификация подъемно-транспортного оборудования и сооружений. Виды осмотровых канав и эстакад. Преимущества и недостатки осмотровых канав и эстакад.
  • 6. Виды подъемников. Способы привода и синхронизации. Страховочные устройства подъемников.
  • 8. Оборудование для балансировки колес. Классификация, принцип работы. Статический и динамический дисбаланс.
  • 9. Оценка механизации технологических процессов на предприятиях технического сервиса.
  • 10. Выбор технологического оборудования для постов и участков птс. Показатели, по которым ведется выбор оборудования.
  • 11. Виды обслуживания технологического оборудования. Классификация оборудования для составления системы его то и ремонта. Методы организации и планирования то и ремонта оборудования.
  • 2. Действительный рабочий цикл двигателя внутреннего сгорания.
  • 3. Расчет действительного цикла двигателя, параметры впуска.
  • 4. Расчет процесса сжатия.
  • 5. Определение параметров цикла в конце процесса сгорания.
  • 6. Процесс расширения.
  • 7. Процесс выпуска.
  • 8. Индикаторная диаграмма цикла
  • 9. Индикаторные и эффективные показатели рабочего цикла.
  • 10. Показатели токсичности работы двигателя.
  • 12. Тепловой баланс двигателя.
  • 13. Определение и классификация характеристик двс.
  • 14. Регуляторная характеристика дизельного двигателя.
  • 15. Основы кинематического расчета
  • 16. Основы динамического расчета двигателя.
  • 17. Уравновешивание двигателей внутреннего сгорания.
  • 18. Уравновешивание сил инеции с помощью специальных механизмов.
  • 19. Применение альтернативных видов топлива.
  • 20. Новые типы двигателей.
  • Вопросы к гос.Экзамену по факультету тех.Сервиса, дисциплина «Детали машин и основы конструирования»
  • 2) Муфты электрического действия(электрические)
  • 3) Муфты гидравлического действия(гидравлические)
  • 4) Муфты неуправляемые(постоянно действующие):
  • 10. Конструкция и расчет втулочной муфты и упругой втулочно-пальцевой муфты.
  • 11. Резьбовые соединения (рс): назначение, классификация, основные параметры, оценка. Сравнение прямоугольной и треугольной резьбы по трению.
  • 12. Расчет элементов резьбы на прочность и износостойкость.
  • 13.Шпоночные соединения: назначение, классификация, оценка. Расчет призматических, сегментных шпонок.
  • 14. Шлицевые (зубчатые) соединения: назначение, область применения, оценка. Прямобочные шлицевые соединения, способы центрирования. Эвольвентные и треугольные шлицевые соединения.
  • 2.Назначение, устройство конструкции и принцип действия датчиков массового расхода топлива.
  • 3.Назначение, устройство конструкции и принцип действия датчиков кислорода.
  • 4.Преимущества электронных систем впрыска по сравнению с карбюраторной подачей топлива.
  • 5.Развитие и классификация систем электронного впрыска топлива бензинового двс.
  • 7.Особенности системы управления работой двс «к- Jetronic».
  • 8.Особенности цифровой системы управления работой двс «Motronic-3.1» и выше.
  • 9.Преимущества и недостатки электроусилителей руля перед обычными.
  • 6.Конструктивные особенности двс по экологическому классу евро- 1.2….4 и 5*.
  • 10.Устройство и принцип действия электрогидроусилителя руля.
  • 11.Устройство и принцип действия электроусилителя руля.
  • 12.Устройство и принцип действия системы abs и abs-2
  • 13.Устройство и принцип действия системы esp и esp-2.
  • 14.Устройство и принцип действия can- шины.
  • 9.Количественная оценка состояния автомобилей и показателей эффективности их эксплуатации
  • 11.Виды полуосей автомобиля и требования к ним.Виды мостов автомобилей
  • 20. Показатели токсичности работы двигателей.
  • Вопросы к госэкзамену по ремонту машин для специальностей 110304, 190603
  • Контрольные вопросы по дисциплине «то и тр кузовов автомобилей»
  • 14.Устройство и принцип действия can- шины.

    CAN (Controller Area Network). Она была предложена Робертом Бошем (Robert Bosch) в 80-х годах для автомобильной промышленности, затем стандартизована ISO (ISO 11898) и SAE (Society of Automotive Engineers). (Описание стандартов и большой объем документации по CAN можно найти на сайте http://www.can-cia.de/) Сегодня большинство европейских автомобильных гигантов (например, Audi, BMW, Renault, Saab, Volvo, Volkswagen) используют CAN в системах управления двигателем, безопасности и обеспечения комфорта. В Европе в ближайшие годы будет введен единый интерфейс для систем компьютерной диагностики автомобиля. Это решение также разрабатывается на базе CAN, так что со временем в каждом автомобиле будет по крайней мере один узел этой сети.

    Однако сети CAN используются и в таких сложных установках, как современные оптические телескопы с большим диаметром зеркала. Так как такие зеркала невозможно сделать монолитными, их сейчас делают составными, а управление отдельными зеркальцами (их может быть больше сотни) осуществляется сетью микроконтроллеров. Другие сферы применения - корабельные бортовые сети, управление системами кондиционирования воздуха, лифтами, медицинскими и промышленными установками. В мире уже установлено более 100 млн. узлов сетей CAN, ежегодный прирост составляет более 50%.

    CAN представляет собой асинхронную последовательную шину, использующую в качестве среды передачи витую пару проводов (см. рисунок 1). При скорости передачи 1 Мбит/с длина шины может достигать 30 м. При меньших скоростях ее можно увеличить до километра. Если требуется большая длина, то ставятся мосты или повторители. Теоретически число подсоединяемых к шине устройств не ограничено, практически - до 64-х. Шина мультимастерная, т. е. сразу несколько устройств могут управлять ею.

    Характеристики шины Controller Area Network (CAN)

    Топология: последовательная шина, с обоих концов линии стоят заглушки (120 Ом)

    Обнаружение ошибок: 15-битовый CRC-код

    Локализация ошибок: различают ситуации с постоянной ошибкой и временной; устройства с постоянной ошибкой отключаются

    Текущая версия: CAN 2.0B

    Скорость передачи: 1 Мбит/с

    Длина шины: до 30 м

    Количество устройств на шине: ~ 64 (теоретически неограничено)

    На рынке CAN присутствует в двух версиях: версия А задает 11-битную идентификацию сообщений (т. е. в системе может быть 2048 сообщений), версия B - 29-битную (536 млн. сообщений). Отметим, что версия В, часто именуемая FullCAN, все больше вытесняет версию А, которую называют также BasicCAN.

    Сеть CAN состоит из узлов с собственными тактовыми генераторами. Любой узел сети CAN посылает сообщение всем системам, подсоединенным к шине, таким, как приборная доска или подсистема определения температуры бензина в автомобиле, а уж получатели решают, относится ли данное сообщение к ним. Для этого в CAN имеется аппаратная реализация фильтрации сообщений.

    Каждый подключенный к CAN-шине блок имеет определенное входное сопротивление, в результате образуется общая нагрузка шины CAN. Общее сопротивление нагрузки зависит от числа подключенных к шине электронных блоков управления и исполнительных механизмов. Так, например, сопротивление блоков управления, подключенных к CAN-шине силового агрегата, в среднем составляет 68 Ом, а системы "Комфорт" и информационно-командной системы - от 2,0 до 3,5 кОм.

    Следует учесть, что при выключении питания происходит отключение нагрузочных сопротивлений модулей, подключенных к CAN-шине.

    Системы и блоки управления автомобиля имеют не только различные нагрузочные сопротивления, но и скорости передачи данных, все это может препятствовать обработке разнотипных сигналов.

    Для решения данной технической проблемы используется преобразователь для связи между шинами.

    Такой преобразователь принято называть межсетевым интерфейсом, это устройство в автомобиле чаще всего встроено в конструкцию блока управления, комбинацию приборов, а также может быть выполнено в виде отдельного блока.

    Также интерфейс используется для ввода и вывода диагностической информации, запрос которой реализуется по проводу "К", подключенному к интерфейсу или к специальному диагностическому кабелю CAN-шины.

    В данном случае большим плюсом в проведении диагностических работ является наличие единого унифицированного диагностического разъема (колодка OBD).

    Следует учесть, что на некоторых марках автомобилей, например, на Volkswagen Golf V, CAN-шины системы "Комфорт" и информационно-командная система не соединены межсетевым интерфейсом.

    В таблице представлены электронные блоки и элементы, относящиеся к CAN-шинам силового агрегата, системы "Комфорт" и информационно-командной системы. Приведенные в таблице элементы и блоки по своему составу могут отличаться в зависимости от марки автомобиля.

    Диагностика неисправностей CAN-шины производится с помощью специализированной диагностической аппаратуры (анализаторы CAN-шины) осциллографа (в том числе, со встроенным анализатором шины CHN) и цифрового мультиметра.CAN шина силового агрегата

    Электронный блок управления двигателя

    Электронный блок управления КПП

    Блок управления подушками безопасности

    Электронный блок управления АБС

    Блок управления электроусилителя руля

    Блок управления ТНВД

    Центральный монтажный блок

    Электронный замок зажигания

    Датчик угла поворота рулевого колеса

    CAN-шина системы "Комфорт"

    Комбинация приборов

    Электронные блоки дверей

    Электронный блок контроля парковочной системы

    Блок управления системы "Комфорт"

    Блок упрввления стеклоочистителей

    Контроль давления в шинах

    CAN-шина информационно-командной

    Комбинация приборов

    Система звуковоспроизведения

    Информационная система

    Навигационная система

    Как правило работы по проверке работы CAN-шины начинают с измерения сопротивления между проводами шины. Необходимо иметь в виду, что CAN-шины системы "Комфорт" и информационно-командной системы, в отличие от шины силового агрегата, постоянно находятся под напряжением, поэтому для их проверки следует отключить одну из клемм аккумуляторной батареи.

    Основные неисправности CAN-шины в основном связаны с замыканием/обрывом линий (или нагрузочных резисторов на них), снижением уровня сигналов на шине, нарушениями в логике ее работы. В последнем случае поиск дефекта может обеспечить только анализатор CAN-шины.

    В мире производится множество типов контроллеров CAN. Их объединяет общая структура - каждый контроллер имеет обработчик протокола (CAN protocol handler), память для сообщений, интерфейс с ЦП. Во многих популярных однокристальных микропроцессорах есть встроенный контроллер шины CAN.

    Поддержкой технологии CAN занимается некоммерческая международная группа CiA (CAN in Automation, http://www.can-cia.de/), образованная в 1992 г. и объединяющая пользователей и производителей технологии CAN. Группа предоставляет техническую, маркетинговую и продуктовую информацию. Осенью 1999 г. в CiA было около 340 членов. Она также занимается разработкой и поддержкой различных базирующихся на CAN протоколов высокого уровня, таких, как CAL (CAN Application Layer), CAN Kingdom, CANopen и DeviceNet. Кроме того, члены группы дают рекомендации, касающиеся дополнительных свойств физического уровня, например скорости передачи и назначения штырьков в разъемах.

    В будущее эта шина развивается в нескольких направлениях. В новом проекте стандарта будет увеличена скорость передачи данных, так как в автомобиле появилось много компьютерных подсистем, связанных с передачей аудио- и видеоинформации. Повышение надежности требует введения так называемой двойной (дублированной) шины CAN. Другие изменения достаточно кардинальны и вызваны появлением нового протокола, рассмотренного ниже.

    15.Устройство и принцип действия форсунки Коммон-Ройл. Электро-гидро-механическая форсунка (будем далее ее называть ЭГМ-форсунка) – самый интересный элемент во всей этой конструкции.

    «Электро» - потому что она управляется ECU.

    «Гидро» - потому что в нее «заходит» как и топливо, так и масло. И то и другое под высоким давлением.

    «Механическая» - потому что внутри движутся механические части.

    ЭГМ-форсунка вставляется вертикально в головку блока цилиндров таким образом, что бы совпали отверстия (на рисунке они обозначены красным и синим на «теле» форсунки) на форсунке и отверстия на "топливо-масляной рейке". Далее "легким движением руки" форсунка "защелкивается" на два уплотнения и крепится "болтиком на 12". Все очень просто и доступно. На рисунке выше приведен немного другой тип форсунок системы Common Rail.

    При начале вращении двигателя, через шестеренчатый привод начинает вращаться и ТНВД (назовем его так или – «топливный аккумулятор») начинает создавать давление.

    Давление как топлива, так и масла.

    Топливо через систему фильтров забирается из топливного бака, а масло - из картера, через такую же систему фильтров.

    По своим гидролиниям (и через «топливо-масляную рейку»), топливо и масло попадают в форсунку.

    Теперь самое интересное: форсунка открывается по сигналам ECU.

    Пока нет сигнала, и топливо, и масло «стоят перед форсункой", им деваться некуда (давление и того и другого может составлять 150 - 200 и намного более кг\см2).

    Но как только сигнал от ECU поступает на электромагнитную форсунку, то происходит СЛОЖЕНИЕ СИЛ – давления масла и электромагнита, и запорная игла форсунки приподнимается на то время, на какое рассчитан управляющий импульс.

    Происходит впрыск топлива в камеру сгорания.

    Импульс исчез, и сильно подпружиненная запорная игла снова возвращается в свое исходное положение.

    То есть: конструкция ЭГМ-форсунки рассчитана таким образом, что для впрыска топлива необходимо иметь ДВЕ силы – самого электромагнита и давления масла

    (происходит так называемое гидроусиление электромагнитного клапана).

    Если не будет выполнено хотя бы одно условие, то форсунка не сработает. Или сработает «неправильно», топлива тогда будет впрыснуто или больше, или меньше. То есть – «нерасчетное» количество.

    Вот это и есть самое главное и особенное отличие системы Common Rail от «обычных» дизельных двигателей.

    ТЕХНИЧЕСКАЯ ЭКСПЛУАТАЦИЯ СИЛОВЫХ АГРЕГАТОВ И ТРАНСМИССИИ

      Эксплуатация автомобилей при низких температурах. Поддержание теплового режима движения при безгаражном хранении

      Причины и характер изнашивания ЦПГ. Диагностика ЦПГ

      Причины и характер изнашивания КИМ. Диагностика КИМ

      Причины и характер изнашивания топливной аппаратуры дизельных двигателей. Диагностика системы питания дизельного двигателя

      Диагностирование системы охлаждения и системы зажигания карбюраторного двигателя

      Гидравлическая коробка передач. Устройство и принцип гидротрансформатора, его характеристики, виды гидротрансформаторов

      Механические коробки передач, виды, требования и диагностика

      Дифференциация. Назначение и типы требования к дифференциалу

      Количественная оценка состояния автомобилей и показателей эффективности их эксплуатации

      Основные факторы, влияющие на расход топлива автомобилями. Влияние ТО на экономию топлива. Нормирование расхода топлива на АТП

      Виды полуосей автомобиля и требования к ним. Виды мостов автомобилей

    ТЭСАТ 1.Эксплуатация автомобилей при низких температурах. Поддержание теплового режима движения при безгаражном хранении.

    Затруднения пуска двигателей возникает из-за сложности создания пусковой частоты вращения коленчатого вала, ухудшения условий смесеобразования и воспламенения смеси. Для надежного пуска двигателя скорость проворачивания или частота вращения коленчатого вала должна быть равной или превышать минимальную частоту вращения, обеспечивающую процесс подготовки горючей смеси в карбюраторе. Эта величина сильно зависит от окружающей среды.

    При снижении температуры масла значительно увеличивается его вязкость, в результате чего увеличивается сопротивление прокручивания коленчатого вала и снижается скорость его вращения. Это, естественно, вызывает ухудшение условий воспламенения.

    Снижение температуры электролита аккумуляторной батареи в значительной мере ухудшает энергетические возможности аккумулятора, а, следовательно, уменьшает и скорость проворачивания коленчатого вала и, в конечном итоге, ухудшает воспламенение топлива. При холодном пуске топливо хуже испаряется, т.к. испарение – процесс эндотермический, т.е. проходящий с поглощением теплоты.

    Некоторые исследователи утверждают, что износ холодных двигателей в процессе пуска составляет 50-70% от общих эксплуатационных износов. В наиболее неблагоприятных условиях с точки зрения износов при низких температурах находятся агрегаты трансмиссии – коробка передач и задние мосты.

    Снижение надежности машин при низких температурах вызывается рядом причин, эти причины в свою очередь приводят к увеличению частоты пусковых отказов, снижению долговечности элементов машин, ухудшению ремонтопригодности. Причиной поломок рессор является хладноломкость, возникающая при воздействии на материал низких температур. Эксплуатация автомобилей в условиях низких температур связана с увеличением расхода топлива, это объясняется:

    Повышением сопротивления в агрегатах трансмиссии из-за загустевания смазки; - неполнотой сгорания, связанной с ухудшением испарения и распылевания топлива;

    Необходимостью дополнительных затрат топлива на прогревы двигателя; - увеличением сопротивления качению колес при движении по зимней дороге.

    Одним из широко распространенных способов подогрева или разогрева автомобильных двигателей при низких температурах является вода или парообогрев.

    Воздухообогрев – один из наиболее распространенных способов безгаражного хранения автомобилей. Он используется широко на предприятиях Норильска, Челябинска, Тюмени. Для получения горячего воздуха и подачи его к обогреваемым автомобилям площадки безгаражного хранения оборудуются специальными установками, составными частями которой являются: устройство для подогрева и подачи воздуха (калориферные агрегаты), воздуховоды, соединительные рукава, для подвода воздуха к автомобильным агрегатам, система контроля и сигнализация.

    Электрообогрев достаточно эффективен и позволяет осуществлять регулирование количества подаваемого к автомобилям тепла в широких пределах. Электрообогрев широко используется не только в нашей стране, но и за рубежом. При групповом обогреве автомобилей используют электрическую энергию от трансформаторов подстанции. Для преобразования электрической энергии в тепловую применяются нагревательные элементы, которые можно разделить на 2 группы: с твердым проводником и жидкостные. В качестве твердых проводников используется сплавы нихром, фехраль, кантал, хромам, лучшим является нихром. Применяются электронагревательные элементы из твердых проводников с открытой или закрытой спиралью. Среди нагревателей с твердым проводником, хорошо себя зарекомендовали цилиндрические электронагреватели, у которых спираль монтируется внутри патрубка системы охлаждения.

    Инфракрасный газовый обогрев. Обогревание двигателей осуществляется с помощью горелок инфракрасного излучения, применяется сравнительно недавно. Он основан на том, что инфракрасные лучи по природе своей являющиеся электромагнитными колебаниями с длиной волны до 1 мкм (конец видимого спектра) до 1 мм (наиболее короткие радиоволны) практически не поглощаются чистым воздухом, а металл обогреваемых агрегатов поглощает излучение и нагревается. Для этого разработаны специальные горелки, предназначенные для работы в стационарных условиях и передвижные. «Газоавтоматика», «Радиант». Горелки могут работать как на природном газе, так и на пропане.

    К индивидуальным средствам и способам безгаражного хранения автомобилей относятся утеплительные чехлы, утепление агрегатов, утепление аккумуляторных батарей.

    ТЭСАТ 2.Причины и характер изнашивания ЦПГ. Диагностика ЦПГ. 2. Интенсивность изнашивания зависит от очень большого количества факторов.

    Основные факторы можно подразделить на конструкторские;

    эксплуатационные.

    К конструкторским факторам относятся:вид трения (сухое, жидкостное, граничное); вид металла (механические характеристики, химический состав, структура);

    вид обработки металла (термообработка, различные виды упрочнений, насыщение поверхностного слоя другими металлами и т.д.).

    К эксплуатационным факторам относятся:условия работы автомобиля; режим работы его сопряжений.

    Цилиндро-поршневая группа (ЦПГ) является основным и важнейшим узлом трения ДВС. Внутренняя поверхность цилиндра, днище поршня и крышка образуют камеру сгорания. Боковая поверхность (зеркало цилиндра) служит направляющей для движения поршня.

    Поршни ДВС, являясь подвижным элементом пары трения, работают в условиях высоких механических и тепловых нагрузок.

    Блоки цилиндров обычно выполняют как коробчатую конструкцию с отверстиями для цилиндровых гильз и каналов охлаждающей среды.

    По конструкции гильзы подразделяют на "мокрые", омываемые снаружи охлаждающей жидкостью, и "сухие", имеющие небольшую толщину стенок (2-4 мм), что позволяет без больших расходов применять качественные износостойкие материалы.

    Диагностирование кривошипно-шатунного и газораспределительного механизмов двигателя

    Кривошипно-шатунный механизм (КШМ) включает цилиндро-поршневую группу – гильзы цилиндров, поршни и поршневые кольца, коленчатый вал с шатунными и коренными подшипниками, шатуны со втулками, поршневые пальцы и маховик. Неисправности деталей этого механизма вызывают значительное изменение диагностических параметров: мощность двигателя падает на 15…20%, увеличивается угар масла и прорыв газов в картер, уменьшение компрессии, нарастают шум и вибрации, появляются стуки, резко увеличивается загрязнение картерного масла продуктами износа. Поэтому, основными параметрами, по которым определяют состояние цилиндро-поршневой группы, являются угар масла, количество прорывающихся в картер газов, компрессия, утечка сжатого газа, шумы, стуки, вибрации.

    Угар масла определяется в эксплуатационных условиях. Для этого учитывают расход масла и расход топлива в течение нескольких контрольных смен. Однако этот метод, весьма приближённый, так как невозможно точно учесть расход масла. Имеют место утечки масла через неплотности сальников коленчатого вала и разъёмов картеров. Кроме того, угар масла в течение длительного времени работы двигателя изменяется незначительно и лишь при большом износе деталей цилиндропоршневой группы, в частности поршневых колец, начинает резко возрастать. Такой характер изменения угара масла в зависимости от наработки затрудняет прогнозирование остаточного ресурса. Наибольшее распространение для оценки состояния цилиндро-поршневой группы (ЦПГ) получил способ определения количества газов, прорывающихся в картер. Этот метод более объективен и то-чен. Однако, при измерении количества газов ротаметром имеют место утечки части газов в атмосферу. Чтобы избежать этого, во время измерений газы из картера отсасывают, обеспечивая прохождение их только через измерительное устройство.

    Измерение количества газов, прорывающихся в картер, осуще-ствляют индикатором КИ-13671. Индикатор устанавливают на двигатель и полностью открывают дроссель индикатора. Пускают двигатель и устанавливают номинальную частоту вращения коленчатого вала. Поворотом крышки плавно перекрывают дроссельное отверстие до тех пор, пока поршень не займёт среднее положение относительно проточки на трубке сигнализатора. В этом положении считывают показания индикатора по цифре, находящейся против указателя на шкале крышки.

    Разница в значениях компрессии у нового и изношенного двигателя возрастает с понижением частоты вращения коленчатого вала, поэтому компрессию следует определять при пусковой частоте вращения коленчатого вала. Для правильной сравнительной оценки состояния ЦПГ по компрессии должно быть соблюдено равенство и постоянство частоты вращения коленчатого вала и температуры стенок цилиндров при проверке каждого из них в отдельности. Соблюдение отмеченных условий не всегда представляется возможным, следовательно, компрессия является ориентировочным показателем состояния ЦПГ.

    Примечание: перед подключением устройства КИ-13936 к масляной маги-страли у дизеля ЯМЗ-238НБ заменяют фильтрующий элемент.

    Перед прослушиванием объекта диагностирования автотестоскоп вынимают из футляра, ввёртывают наконечник и вставляют штеккер телефона в соответствующие гнёзда. Прикладывают наконечник к месту прослушивания, предварительно закрепив телефон на ухе. Если стуков не слышно, то меняют режим работы двигателя, отключают отдельные цилиндры или дросселируют выхлоп, перекрывая выпускную трубу. По характеру появившегося стука или шума в КШМ устанавливают причину неисправности и способ её устранения. Характер стуков изменяется с увеличением зазоров сопряжённых деталей и изменении режимов работы двигателя. При этом, количественная оценка зазоров зависит от слуховых качеств и опыта оператора.

    ТЭСАТ 3. Причины и характер изнашивания КШМ. Диагностика КШМ . При прослушивании карбюраторных двигателей минимальная частота вращения коленчатого вала на холостом ходу должна быть 400мин, а для дизеля 500 мин.

    Для того чтобы на слух определить причину неисправности, необходимо знать характер стуков при различных неисправностях.

    Неисправность поршней характеризуется глухим щёлкающим звуком, который прослушивается выше плоскости разъёма картера при резком уменьшении частоты вращении коленчатого вала сразу после пуска холодного двигателя.

    На неисправность коренных подшипников указывает сильный глухой низкий звук, который прослушивается в плоскости разъёма картера двигателя при резком изменении частоты вращения коленчатого вала.

    При неисправности поршневого пальца слышен резкий звонкий высокий звук в зоне верхнего и нижнего положения поршневого пальца при изменении частоты вращения коленчатого вала двигателя. Не путать с детонационными стуками, которые проявляются при большом угле опережения зажигания и исчезают при его уменьшении.

    Значительное снижение мощности двигателя происходит из-за увеличенного износа рабочих поверхностей деталей цилиндро – поршневой группы – поршня, гильзы цилиндра, компрессионных колец, а также неплотного прилегания клапанов к седлам, повреждения прокладки головки блока цилиндров или ослабление крепления головки блока цилиндров. Эти неисправности вызывают потерю компрессии, снижение давления в цилиндре в конце такта сжатия.Основными неисправностями КШМ являются:

    Изнашивание, заклинивание, разрушение вкладышей;

    Деформация постелей в блоке;-Деформация коленчатого вала; -Деформация и изнашивание отверстий нижней головки шатуна; -Обрыв шатуна или шатунных болтов;

    Изнашивание втулки верхней головки шатуна;

    Изнашивание подшипников балансирных валов;

    Заклинивание или разрушение подшипников балансирных валов.Основными причинами неисправности ГРМ являются:

    Нарушение тепловых зазоров между стержнями клапанов и носками коромысел;-Подгорание рабочих фасок клапанов и седел;-Потеря упругости или поломка пружин клапанов;

    Повышенное изнашивание толкателей, штанг, коромысел, направляющих втулок клапанов, опорных шеек, втулок и кулачков распределительного вала, его упорного фланца и зубьев распределительного зубчатого колеса.

    ТЭСАТ 4.Причины и характер изнашивания топливной аппаратуры дизельных двигателей. Диагностика системы питания дизельного двигателя. К системе питания дизелей относятся топливо- и воздухоподводящая аппаратура, выпускной газопровод и глушитель шума отработавших газов. В четырехтактных дизелях наибольшее распространение получила топливоподводящая аппаратура разделенного типа, у которой топливный насос высокого давления ТНВД и форсунки конструктивно выполнены отдельно и соединены трубопроводами. Топливоподача осуществляется по двум основным магистралям: низкого и высокого давления. Назначение механизмов и узлов магистрали низкого давления состоит в хранении топлива, его фильтрации и подачи под малым давлением к насосу высокого давления. Механизмы и узлы магистрали высокого давления обеспечивают подачу и впрыскивание необходимого количества топлива в цилиндры двигателя.

    Техническое состояние механизмов и узлов системы питания двигателя существенно влияет на его мощность и экономичность. Распространенными неисправностями системы питания являются: топливный бак – трещины на баке, негерметичность из-за коррозии;

    топливопроводы – поломка, трещины на них, негерметичность в местах присоединения:

    топливопроводов к топливным фильтрам, ТНВД, форсункам, засорение топливопроводов;топливные фильтры - их засорение;топливоподкачивающий насос - поломка пружин впускное и выпускного клапанов, отсутствие полной посадки клапанов в седла из-за попадания под них загрязнений, снижения упругости пружины поршня, износ поверхностей цилиндра и поршня; ТНВД - износ плунжерных пар, нарушение оптимальных регулировок насоса, износ сопряжения нагнетательный клапан - седло, поломка пружин нагнетательных клапанов и плунжеров, поломка пружин регулятора частоты вращения; форсунки - износ выходных отверстий, их закоксовывание и засорение, потеря упругости или поломка затяжной пружины, негерметичность сопряжения игла - распылитель.

    Диагностика систем питания дизельных двигателей проводится методами ходовых и стендовых испытаний и оценки состояния механизмов и узлов системы после их демонтажа.

    При диагностике методом ходовых испытаний определяют расход топлива при движении автомобиля с постоянной скоростью на мерном горизонтальном участке (1 км) шоссе с малой, интенсивностью движения. Чтобы исключить влияние подъемов и спусков, выбирают маятниковый маршрут, т. е. такой, на котором автомобиль движется до конечного пункта и возвращается по той же дороге. Количество израсходованного топлива измеряют с помощью расходомеров объемного типа. Диагностирование систем питания можно проводить и одновременно с испытанием тяговых качеств автомобиля на стенде с беговыми барабанами.

    Токсичность отработавших газов двигателей проверяют на холостом ходу. Для дизельных двигателей при этом используются фотометры (дымомеры) или специальные фильтры.

    Диагностирование системы питания дизельных двигателей включает в себя проверку герметичности системы и состояния топливных и воздушных фильтров, проверку топливо подкачивающего насоса, а также насоса высокого давления и форсунок.

    Состояние топливных и воздушных фильтров проверяют визуально.Форсунки дизельного двигателя проверяют на стенде НИИАТ-1609 на герметичность, давление начала подъема иглы и качество распыливания топлива.

    Перспективным методом диагностики топливной аппаратуры дизелей является измерение давления топлива и виброакустического импульса в звеньях топливоподающей системы. Для измерения давления между трубкой высокого давления и форсункой системы питания дизеля устанавливают датчик давления. Для измерения виброимпульсов на грани нажимной гайки трубки высокого давления монтируется соответствующий вибродатчик.

    ТЭСАТ 5.Диагностирование системы охлаждения и системы зажигания карбюраторного двигателя. Система охлаждения двигателя обеспечивает его работу в оптимальном температурном режиме, равном 85-90°С, при различных условиях эксплуатации.

    Характерными неисправностями системы охлаждения являются подтекания и недостаточная эффективность охлаждения двигателя. Первое происходит из-за повреждения шлангов их соединений, сальника водяного насоса, порчи прокладок, трещин, а второе - из-за пробуксовки ремня вентилятора или его обрыва, поломок водяного насоса, неисправности термостата, внутреннего или внешнего загрязнения радиатора, в результате образования накипи.

    Признаками неисправности системы охлаждения служит перегрев двигателя и закипание охлаждающей жидкости в радиаторе. Они являются результатом длительной и большой нагрузки двигателя или неправильной регулировки системы зажигания или системы питания.

    Диагностирование системы охлаждения двигателя заключается в определении ее теплового состояния и герметичности, проверке натяжения ремня вентилятора и работы термостата. Разность температур между верхним и нижним бачками радиатора при полностью прогретой системе охлаждения должна быть в пределах 8-12°С. Герметичность системы контролируют на холодном двигателе. Течь охлаждающей жидкости может быть обнаружена по следам подтеканий через сальник жидкостного насоса, в местах соединения патрубков и т.д. Герметичность проверяют под давлением 0,06 МПа.

    Натяжение ремня 1 (см. рис.) привода вентилятора или жидкостного насоса проверяют замером прогиба ремня при нажатии посередине между шкивами с усилием примерно 30-40 Н. Прогиб должен быть в пределах 8-14 мм.

    Работу термостата проверяют при замедленном прогреве двигателя после пуска или, наоборот - при быстром его прогреве и перегреве в процессе работы. Снятый термостат погружают в подогреваемую ванну с водой, контролируя температуру термометром. Момент начала и конца открытия клапана должен происходить соответственно при температурах 65-70 и 80-85"С. Неисправный термостат заменяют.Диагностика с применением 4-х компонентного газоанализатора.

    Диагностирование карбюраторных и впрысковых двигателей не имеет принципиальных отличий. И карбюратор и система впрыска выполняют одну и ту же задачу, только последняя - на более современном, высоком уровне. Поэтому рассмотрим методику диагностики на примере карбюраторного двигателя, делая заметки для систем впрыска.

    Проверку необходимо начинать с параметров холостого хода.

    Завышенное содержание СО на холостом ходе (>1,5%) приводит к перерасходу топлива в городском цикле и провалу в начале движения дроссельной заслонки. Если не удаётся отрегулировать винтом качества смеси карбюратор на предмет снижения СО до необходимого уровня, то наиболее вероятными причинами могут быть:

    1. повреждение уплотнительного кольца на винте качества

    2. завышенный уровень топлива в поплавковой камере

    3. увеличенный размер главного топливного жиклёра

    4. заедание в приоткрытом состоянии заслонки во вторичной камере.

    5. засорился воздушный фильтр или жиклёр.

    Заниженное значение СО (<0,3%) вызывает "вялый" разгон, начальный провал и перерасход топлива, т.к приходится чаще дросселировать. А значение СО<0,1% вызывает "проскоки" искры, а значит увеличение содержания СН и, следовательно, перерасход топлива. Если не удаётся отрегулировать заниженное СО, то наиболее вероятны:

    1. занижен уровень топлива в поплавковой камере

    2. малая подача топлива в карбюратор

    3. засорился главный топливный жиклёр или система холостого хода

    Для систем впрыска:

    1. недостаточние давление в топливной рампе (бензонасос, фильтр тонкой очистки, регулятор давления топлива)

    СО - 1,0-2,5% - большой расход топлива при максимальной мощности на средних оборотах

    Средние обороты - это трассовый цикл движения автомобиля. Большую часть времени двигатель работает именно на этих оборотах, и, соответственно, по ним определяется расход топлива.

    Остаточное содержание углеводородов СН в выхлопных газах показывает качество сгорания ТВ-смеси. Чем полнее сгорает бензин, тем ниже содержание СН.

    Данные параметры при "потраивании" четырёхцилиндрового двигателя говорят о том, что свеча в одном цилиндре не срабатывает:

    А) каждое пятое искрообразованиеБ) каждое третье

    В) каждое второе Г) свеча полностью не работает

    Как правило, свечи начинают выходить из строя на холостом ходе. Поэтому при пропусках зажигания уменьшается доля СО и СО2, а доля О2 возрастает. Если при увеличении оборотов до средних характеристика восстанавливается полностью, то необходимо проверить свечи.

    ТЭСАТ 6.Гидравлическая коробка передач.Устройство и принцип гидротрансформатора, его характеристики, виды гидротрансформаторов. АКПП состоит из:

    1) Гидротрансформатор (ГТ) – соответствует сцеплению в механической трансмиссии, но не требует непосредственного управления со стороны водителя.

    2) Планетарный ряд - соответствует блоку шестерен в механической коробке передач и служит для изменения передаточного отношения в автоматической трансмиссии при переключении передач.

    3) Тормозная лента, передний фрикцион, задний фрикцион – компоненты, посредством которых осуществляется переключение передач.

    4) Устройство управления. Этот узел состоит из маслосборника (поддон коробки передач), шестеренчатого насоса и клапанной коробки. Клапанная коробка представляет собой систему каналов с расположенными в них клапанами и плунжерами, которые выполняют функции контроля и управления. Это устройство преобразует скорость движения автомобиля, нагрузку двигателя и степень нажатия на педаль газа в гидравлические сигналы. На основе этих сигналов, за счет последовательного включения и выхода из рабочего состояния фрикционных блоков, автоматически изменяются передаточные отношения в коробке передач.

    Гидротрансформатор (или torque converter в зарубежных источниках) служит для передачи крутящего момента непосредственно от двигателя к элементам автоматической коробки передач. Он установлен в промежуточном кожухе, между двигателем и коробкой передач и выполняет функции обычного сцепления. В процессе работы этот узел, наполненный трансмиссионной жидкостью, несет довольно высокие нагрузки и вращается с достаточно большой скоростью. Он не только передает крутящий момент, поглощает и сглаживает вибрации двигателя, но и приводит в действие масляный насос, находящийся в корпусе коробки передач. Масляный насос наполняет трансмиссионной жидкостью гидротрансформатор и создает рабочее давление в системе управления и контроля. Поэтому является неверным мнение о том, что автомобиль, оснащенный автоматической трансмиссией, можно завести принудительно, не используя стартер, а разогнав его до высокой скорости. Шестеренчатый насос получает энергию только от двигателя, и если двигатель не работает, то давление в системе управления и контроля не создается, в каком бы положении не находился рычаг выбора режима движения. Следовательно, принудительное вращение карданного вала не обязывает коробку передач работать, а двигатель - вращаться.

    Планетарный ряд В отличие от простой механической трансмиссии, в которой используются параллельные валы и сцепляющиеся между собой шестерни, в автоматических трансмиссиях в подавляющем большинстве используются планетарные передачи.

    Составные части фрикционаПоршень (piston) приводится в действие давлением масла. Двигаясь под давлением масла вправо (по рисунку), поршень посредством конического диска (dished plate) плотно прижимает ведущие диски пакета к ведомым, заставляя их вращаться как единое целое и осуществляя передачу крутящего момента от барабана к втулке. В корпусе самой коробки передач расположены несколько планетарных механизмов, они и обеспечивают необходимые передаточные отношения. А передача крутящего момента от двигателя через планетарные механизмы к колесам происходит с помощью фрикционных дисков, дифференциала и других сервисных устройств. Управление всеми этими устройствами осуществляется благодаря трансмиссионной жидкости через систему управления и контроля. Тормозная лента Устройство, используемое для блокировки элементов планетарного ряда.

    Виды гидротрансформаторов. По конструктивным особенностям различают гидротрансформаторы: одноступенчатые и многоступенчатые, если в круге циркуляции имеется соответственно один или несколько рядов (ступеней) лопаток турбинного колеса; одноциркуляционные и многоциркуляционные, если в его состав входит соответственно один или несколько кругов циркуляции; простые и комплексные, если он не обладает или, наоборот, обладает свойством гидромуфты. В отечественном тепловозостроении имеются примеры выполнения и применения всех названных выше конструктивных видов гидротрансформаторов. Наряду с разделением гидротрансформаторов по конструктивным особенностям существует разделение их по так называемому свойству прозрачности: непрозрачные и прозрачные.

    Под прозрачностью гидротрансформатора понимается его свойство оказывать влияние на режим нагрузки дизеля при изменении внешнего сопротивления движению поезда. На рис. б видно, что в непрозрачном гидротрансформаторе момент насосного колеса Мя (сплошная линия) при постоянной частоте вращения не изменяется при всех значениях момента турбинного колеса и его частоте вращения.

    ТЭСАТ 7.Механические коробки передач, виды, требования и диагностика. Передаточным числом называется отношение числа зубьев ведомой шестерни к числу зубьев ведущей шестерни. Разные ступени коробки передач имеют разные передаточные числа. Низшая ступень имеет наибольшее передаточное число, высшая ступень – наименьшее.

    В зависимости от числа ступеней различают следующие конструкции: четырехступенчатая коробка передач;

    пятиступенчатая коробка передач; шестиступенчатая коробка передач; и выше.

    Наибольшее распространение на современных автомобилях получила пятиступенчатая коробка передач.

    Из всего многообразия конструкций МКПП можно выделить коробки двух основных видов: трехвальная коробка передач;

    двухвальная коробка передач.

    Трехвальная коробка передач устанавливается, как правило, на заднеприводные автомобили. Двухвальная механическая коробка передач применяется на переднеприводных легковых автомобилях. Устройство и принцип работы данных коробок передач имеют существенные различия, поэтому они рассмотрены отдельно.

    Устройство трехвальной механической коробка передач

    Трехвальная коробка передач имеет следующее устройство:

    ведущий (первичный) вал; шестерня ведущего вала;

    промежуточный вал; блок шестерен промежуточного вала;

    муфты синхронизаторов; механизм переключения передач;

    картер (корпус) коробки передач.

    Устройство двухвальной механической коробки передач

    Двухвальная коробка передач имеет следующее устройство:

    ведущий (первичный) вал; блок шестерен ведущего вала;

    ведомый (вторичный) вал; блок шестерен ведомого вала;

    муфты синхронизаторов; главная передача; дифференциал;

    механизм переключения передач; картер коробки передач.

    Уход и эксплуатация

    При эксплуатации коробки передач необходимо следить за уровнем масла в картере и доливать его в случае необходимости. Полная замена масла производится в сроки, указанные в инструкции по эксплуатации автомобиля. При грамотном обращении с рычагом переключения передач и периодической замене масла в картере коробки, она не напоминает о себе практически до конца срока службы автомобиля. Обычно неисправности и поломки в коробке передач появляются в результате грубой работы с рычагом переключения. Если водитель постоянно «дергает» рычаг, то когда-нибудь обязательно выйдут из строя механизм переключения или синхронизаторы, да и сами валы с шестернями. Передачи надо переключать спокойным плавным движением, с небольшой паузой в нейтрали для того, чтобы сработали синхронизаторы.

    Основные неисправности коробки передач:

    Подтекание масла может быть следствием повреждения уплотнительных прокладок, сальников и ослабления крепления крышек картера;

    Шум при работе коробки передач может возникнуть из-за неисправного синхронизатора, износа подшипников, шестерен и шлицевых соединений;

    Затрудненное включение передач может происходить из-за поломок деталей механизма переключения, износа синхронизаторов или шестерен;

    Самовыключение передач случается из-за неисправности блокировочного устройства, а также при сильном износе шестерен или синхронизаторов.

    1.Шум в коробке передач

    Повышенный шум работы КПП может быть вызван следующими причинами: износом зубьев шестерен;

    износом подшипников; недостаточным уровнем масла

    Устранить эти неисправности можно заменив изношенные детали и долив масло, уровень которого должен находиться между контрольными метками указателя уровня масла. При необходимости нужно заменить поврежденные или изношенные сальники.

    2.Затрудненное переключения передач

    Затрудненное переключения передач может быть вызвано следующими причинами:

    Неполное выключение сцепления

    Деформация тяги привода управления механизмом переключения передач или реактивной тяги

    Ослабление винтов крепления шарнира или рычага штока выбора передач

    Неправильная регулировка привода переключения передач

    Износ или поломка пластмассовых деталей в прводе переключения передач

    Для устранения этих неисправностей необходимо отрегулировать или заменить поврежденные или неисправные детали КПП.

    3.Самопроизвольное выключение передач

    При самопроизвольном выключении передач основными причинами могут быть:

    Повреждение или износ торцев зубьев синхронизаторов на шестерне и муфте

    Повышенные колебания силового агрегата на опорах из-за трещин или расслоение резины на задних опорах

    Недовключение передач из-за неправильной регулировки привода переключения передачи неправильной установки (натягивания) защитного чехла тяги

    Для устранения этих неисправностей необходимо заменить изношенные или поврежденные детали или отрегулировать привод.

    4.Шум ("треск") в момент включения передач

    Этот дефект может возникать в силу следующих причин:

    Неполного включения сцепления

    Износа блокирующего кольца синхронизатора включаемой передачи, которое необходимо заменить.

    5.Утечка масла из КПП может возникнуть в следствии износа сальников первичного вала, корпусов шарниров равных угловых скоростей, штока выбора передач или уплотнителя валика привода спидометра. Также утечка масла возможна при ослаблении крепления и повреждении герметика в местах крепления крышки и картера коробки. Необходимо также проверить крепление сливной пробки.

    ТЭСАТ 8.Дифференциация. Назначение и типы требования к дифференциалу. Назначение, принцип действия дифференциала.

    Дифференциал предназначен для передачи крутящего момента от главной передачи к полуосям и позволяет им вращаться с разной скоростью при повороте автомобиля и на неровностях дороги.

    На автомобилях применяют шестеренчатые конические дифференциалы (рис. а), которые состоят из полуосевых шестерен 3, сателлитов 4 и объединяющего их корпуса, прикрепленного к ведомой шестерне главной передачи.

    Дифференциалы такого типа используют между колесами ведущих мостов как межколесные. Для различных автомобилей они отличаются конструкцией корпуса и числом сателлитов. Конические дифференциалы используют также и в качестве межосевых. В этом случае они распределяют крутящий момент между главными передачами ведущих мостов.

    На рисунке для упрощения не показан корпус дифференциала, поэтому для рассмотрения принципа действия будем считать, что ось 1 сателлитов установлена в корпусе. При вращении ведущей шестерни 5 и ведомой шестерни 2 главной передачи крутящий момент передается на ось 1 сателлитов, далее через сателлиты 4 на полуосевые шестерни 3 и на полуоси 6.

    При движении автомобиля по прямой и ровной дороге задние колеса встречают одинаковое сопротивление и вращаются с одинаковой частотой (рис. а). Сателлиты вокруг своей оси не вращаются и на оба колеса передаются одинаковые крутящие моменты. Как только условия движения изменяются, например на повороте (рис. б), левая полуось начинает вращаться медленнее, так как колесо с которым она связана, встречает большое сопротивление. Сателлиты приходят во вращение вокруг своей оси, обкатываясь по замедляющейся полуосевой шестерне (левой) и увеличивая частоту вращения правой полуоси. В результате правое колесо ускоряет свое вращение и проходит большой путь по дуге наружного радиуса.

    Одновременно с изменением скоростей полуосевых шестерен происходит изменение крутящего момента на колесах - на ускоряющемся колесе момент падает. Так как дифференциал распределяет моменты на колеса поровну, то в этом случае на замедляющемся колесе происходит также уменьшение момента. В результате суммарный момент на колесах падает и тяговые свойства автомобиля снижаются. Это сказывается отрицательно на проходимости автомобиля при движении по бездорожью и скользким дорогам, т.е. одно из колес стоит на месте (допустим, в яме), а другое в это время буксует (по сырой земле, глине, снегу). Но на дорогах с хорошим сцеплением шестеренчатый конический дифференциал обеспечивает лучшую устойчивость и управляемость, а водителю не приходится менять каждый день напрочь изношенные шины.

    Типы дифференциалов.-Самоблокирующиеся дифференциалы повышенного трения с частичной блокировкой.-Самоблокируемый червячный дифференциал типа «Квайф» (Quaife).

    Автоматическая блокировка с использованием Вискомуфты в качестве "Slip Limiter".-Кулачковые и зубчатые автоматические блокировки.-Полная (100%-я) ручная блокировка..

    Для повышения проходимости автомобиля при движении по бездорожью применяют дифференциалы с принудительной блокировкой или самоблокирующийся дифференциал.

    Сущность принудительной блокировки состоит в том, что ведущий элемент (корпус) дифференциала в момент включения блокировки жестко соединяется с полуосевой шестерней. Для этого предусмотрено специальное дистанционное устройство с зубчатой муфтой.

    Диагностика и ремонт: CAN - шина

    21.02.2006

    Именно так выглядит (в основном) та самая "шина CAN", с которой в последнее время нам придется сталкиваться все чаще и чаще:

    фото 1

    Это обыкновенный двухпроводной кабель получивший название Twisted Pair.
    На приведенном фото 1 показаны провода CAN High и CAN Low силового агрегата.
    По этим проводам производится обмен данными между блоками управления, они могут нести информацию о скорости автомобиля, скорости вращения коленчатого вала, угле опережения зажигания и так далее.
    Обратите внимание, что один из проводов дополнительно помечен черной полоской. Именно таким образом отмечается и визуально определяется провод CAN High (оранжево-черный).
    Цвет провода
    CAN-Low - оранжево-коричневый.
    За основной цвет шины
    CAN принят оранжевый цвет.

    На рисунках и чертежах принято изображать цвета проводов шины CAN другими цветами, а именно:

    фото 2

    CAN-High - желтым цветом
    CAN-Low - зеленым цветом

    Всего существует несколько разновидностей шин CAN, определяемых выполняемыми ими функциями:
    Шина CAN силового агрегата (быстрый канал ).
    Она позволяет
    передавать информацию со скоростью)500 кбит/с и служит для связи между блоками управления (двигатель - трансмиссия)
    Шина CAN системы "Комфорт" (медленный канал ).
    Она позволяет
    передавать информацию со скоростью100 кбит/с и служит для связи между блоками управления, входящими в систему "Комфорт".
    Шина данных CAN информационно- командной системы (медленный канал ), позволяющая передавать данные со скоростью 100 kBit/s. Обеспечивает связь между различными обслуживающимисистемами ( например,телефонной и навигационной системами) .

    Новые модели автомобилей все более становятся похожими на самолеты - по количеству заявленных функций для безопасности, комфорта и экологичности. Блоков управления становится все больше и больше и "тянуть" от каждого грозди проводов - нереально.
    Поэтому кроме шины CAN уже существуют другие шины, получившие названия:
    – шина LIN (однопроводная шина)
    – шина MOST (оптоволоконная шина)
    – беспроводная шина Bluetooth

    Но не будем "расплываться мыслью по древу", заострим наше внимание пока что на одной конкретной шине: CAN (по взглядам корпорации BOSCH).

    На примере шины CAN силового агрегата можно посмотреть форму сигнала:

    Фото 3

    Когда на High шине CAN доминантное состояние, то напряжение проводе повышается до 3.5 вольт.
    В рецессивном состоянии напряжение на обоих проводах равняется 2.5 вольта.
    Когда на проводе
    Low доминантное состояние, то напряжение падает до 1.5 вольта.
    ("Доминанта" - явление, доминирующее, главенствующее или господствующее в какой-либо сфере,- из словарей).

    Для повышения надежности передачи данных, в шине CAN применяется дифференциальный способ передачи сигналов по двум проводам, имеющим название Twisted Pair. А провода, которые образуют эту пару, называются CAN High и CAN Low.
    В исходном состоянии шины на обоих проводах поддерживается постоянное напряжение на определенном (базовом) уровне. Для шины
    CAN силового агрегата оно приблизительно равняется 2.5 вольта.
    Такое исходное состояние называется "состоянием покоя" или "рецессивом".

    Каким образом передаются и преобразуются сигналы по CAN шине?

    Каждый из блоков управления подсоединен к CAN шине посредством отдельного устройства под названием трансивер, в котором имеется приемник сигналов, представляющий собой дифференциальный усилитель, установленный на входе сигналов:

    фото 4

    Поступающие по проводам High и Low сигналы, поступают в дифференциальный усилитель, обрабатываются и поступают на вход блока управления.
    Эти сигналы представляют собою напряжение на выходе дифференциального усилителя.
    Дифференциальный усилитель формирует это выходное напряжение как разность между напряжениями на проводах High и Low шины CAN.
    Таким образом исключается влияние величины базового напряжения (у шины CAN силового агрегата оно равно 2,5 В) или какого либо напряжения, вызванного, например, внешними помехами.

    Кстати, насчет помех. Как говорят, "шина CAN довольно устойчива к помехам, поэтому она нашла такое широкое применение".
    Попробуем разобраться с этим.

    Провода шины CAN силового агрегата расположены в моторном отсеке и на них могут воздействовать помехи различного порядка, например, помехи от системы зажигания.

    Так как шина CAN состоит из двух проводов, которые перекручены между собой, то помеха одновременно воздействует на два провода:

    Из вышеприведенного рисунка видно, что происходит далее: в дифференциальном усилителе напряжение на проводе Low (1,5 В – " Pp") вычитается из напряжения
    на проводе High (3,5 В – "
    Pp") и в обработанном сигнале помеха отсутствует (" Pp" - помеха).


    Примечание: По наличию времени статья может иметь продолжение - много еще остается "за кадром".



    Кучер В.П.
    © Легион-Автодата

    Вас также может заинтересовать:

    Для того чтобы упорядочить работу всех контроллеров, которые облегчают управление и повышают контроль вождения автомобилем, используется CAN-шина. Подключить такое устройство к сигнализации машины можно своими руками.

    [ Скрыть ]

    Что такое CAN-шина и принцип ее работы

    КАН-шина представляет собой сеть контроллеров. Устройство используется для объединения всех управляющих модулей автомобиля в одну рабочую сеть с общим проводом. Этот девайс состоит из одной пары кабелей, которая называется CAN. Информация, передающаяся по каналам из одного модуля на другой, отправляется в закодированном виде.

    Схема подключения устройств к CAN-шине в Мерседесе

    Какие функции может выполнять CAN-шина:

    • подключение к автомобильной бортовой сети любых девайсов и устройств;
    • упрощение алгоритма подсоединения и функционирования вспомогательных систем машины;
    • блок может одновременно получать и передавать цифровые данные из разных источников;
    • использование шины снижает воздействие внешних электромагнитных полей на функционирование основных и вспомогательных систем машины;
    • CAN-шина позволяет ускорить процедуру передачи информации к определенным устройствам и узлам автомобиля.

    Эта система работает в нескольких режимах:

    1. Фоновый. Все устройства отключены, но на шину подается питание. Величина напряжения слишком мала, поэтому разрядить аккумуляторную батарею шина не сможет.
    2. Режим запуска. Когда автолюбитель вставляет ключ в замок и проворачивает его либо жмет кнопку Старта, происходит активация устройства. Включается опция стабилизации питания, которое подается на контроллеры и датчики.
    3. Активный режим. В этом случае между всеми контроллерами и датчиками происходит обмен данными. При работе в активном режиме параметр потребления энергии может быть увеличен до 85 мА.
    4. Режим засыпания или отключения. При глушении силового агрегата контроллеры КАН перестают функционировать. При включении режима засыпания все узлы машины отключаются от бортовой сети.

    Канал Виалон СУшка в своем видео рассказал о КАН-шине и что надо знать про ее эксплуатацию.

    Плюсы и минусы

    Какими преимуществами обладает КАН-шина:

    1. Простота установки устройства в автомобиль. Владельцу машины не придется тратиться на монтаж, поскольку выполнить эту задачу можно самостоятельно.
    2. Быстродействие устройства. Девайс позволяет быстро обмениваться информацией между системами.
    3. Устойчивость к воздействию помех.
    4. Все шины обладают многоуровневой системой контроля. Ее использование дает возможность предотвратить появление ошибок при передаче и приеме данных.
    5. В процессе функционирования шина автоматически разбрасывает скорость по разным каналам. Это позволяет обеспечить оптимальную работу всех систем.
    6. Высокая безопасность устройства, при надобности система блокирует несанкционированный доступ.
    7. Большой выбор устройств различных типов от разных производителей. Можно подобрать вариант, предназначенный для конкретной модели авто.

    Какие недостатки характерны для устройства:

    1. В девайсах бывают ограничения по объему передаваемых данных. В современных автомобилях используется множество электронных девайсов. Их большое количество приводит к высокой загруженности канала передачи информации. Это становится причиной увеличения времени отклика.
    2. Большая часть отправляющихся по шине данных обладает конкретным назначением. На полезную информацию отводится маленькая часть трафика.
    3. При использовании протокола высшего уровня автовладелец может столкнуться с проблемой отсутствия стандартизации.

    Виды и маркировки

    Самым популярным типом шин являются устройства, разработанные Робертом Бошем. Девайс может функционировать последовательно, то есть сигнал передается за сигналом. Такие устройства называются Serial BUS. В продаже можно встретить и параллельные шины Parallel BUS. В них передача данных осуществляется по нескольким каналам связи.

    О разновидностях, принципе действия, а также возможностях КАН-шины можно узнать из видео, снятого каналом DIYorDIE.

    С учетом разных типов идентификаторов можно выделить несколько видов устройств:

    1. КАН2, 0А Актив. Так маркируются устройства, которые поддерживают 11-битный формат обмена данными. Эти узлы не обозначают ошибки на импульсы 29-битного узла.
    2. КАН2, 0В Актив. Так маркируются девайсы, функционирующие в 11-битном формате. Основное отличие заключается в том, что при обнаружении идентификатора на 29 бит в системе они будут передавать на управляющий модуль сообщение об ошибке.

    Надо учесть, что в современных машинах такие типы устройств не применяются. Это связано с тем, что работа системы должна быть согласованной и логичной. А в данном случае она может функционировать при нескольких скоростях передачи импульсов — на 125 либо 250 кбит/с. Более низкая скорость используется для управления дополнительных устройств, таких как осветительные приборы в салоне, электрические стеклоподъемники, стеклоочистители и т. д. Высокая скорость нужна для обеспечения рабочего состояния трансмиссии, силового агрегата, системы ABS и т. д.

    Разновидность функций шин

    Рассмотрим, какие существуют функции у различных девайсов.

    Девайс для автомобильного двигателя

    При соединении устройства обеспечивается быстрый канал передачи данных, по которому информация распространяется со скоростью 500 кбит/с. Основное предназначение шины заключается в синхронизации работы управляющего модуля, к примеру, коробки передач и мотора.

    Устройство типа Комфорт

    Скорость передачи данных по этому каналу более низкая и составляет 100 кбит/с. Функция такой шины заключается в соединении всех устройств, относящихся к данному классу.

    Информационно-командный девайс

    Скорость передачи данных такая же, как и в случае с устройствами типа Комфорт. Главная задача шины заключается в обеспечении связи между обслуживающимися узлами, к примеру, мобильным девайсом и системой навигации.

    Шины от разных производителей приведены на фото.

    1. Устройство для автомобильного ДВС 2. Интерфейсный анализатор

    Могут ли быть проблемы в работе CAN-шин?

    В современном авто цифровая шина используется постоянно. Она работает одновременно с несколькими системами, причем по ее каналам связи постоянно передается информация. Со временем в работе устройства могут возникнуть неполадки. В результате анализатор данных будет функционировать неверно. При обнаружении неполадок автовладелец должен найти причину.

    По каким причинам возникают сбои в работе:

    • повреждение или обрыв электроцепей устройства;
    • произошло замыкание в системе на аккумулятор либо массу;
    • могли замкнуть системы КАН-Хай или КАН-Лоу;
    • произошло повреждение прорезиненых перемычек;
    • разряд аккумуляторной батареи или снижение напряжения в бортовой сети, вызванное некорректной работой генераторного устройства;
    • произошла поломка катушки зажигания.

    При поиске причин учитывайте, что неисправность может заключаться в некорректной работе вспомогательных устройств, устанавливающихся дополнительно. К примеру, причина может заключаться в неправильном функционировании противоугонной системы, контроллеров и девайсов.

    О ремонте CAN-шины приборной панели в автомобиле Форд Фокус 2 можно узнать из ролика, снятого пользователем Brock — Video Corporation.

    Процесс поиска неисправности осуществляется так:

    1. Сначала автовладелец производит диагностику состояния системы. Целесообразно осуществить компьютерную проверку, чтобы выявить все неполадки.
    2. На следующем этапе производится диагностика уровня напряжения и сопротивления электрических цепей.
    3. Если все в порядке, то проверяется параметр сопротивления прорезиненых перемычек.

    Диагностика работоспособности КАН-шины требует определенных навыков и опыта, поэтому процедуру поиска неисправностей лучше доверить специалистам.

    Как подключить сигнализацию по CAN-шине

    Для подключения КАН-шины своими руками к автосигнализации машины с автозапуском либо без него надо знать, где находится блок управления противоугонной системой. Если установка сигнализации осуществлялась самостоятельно, то процесс поиска не вызовет сложностей у автовладельца. Управляющий модуль обычно ставится под приборной панелью в районе рулевого колеса либо за контрольным щитком.

    Как произвести процедуру подключения:

    1. Противоугонная система должна быть установлена и подключена ко всем узлам и элементам.
    2. Найдите толстый кабель оранжевого цвета, он подключается к цифровой шине.
    3. Адаптер противоугонной системы подсоединяется к контакту найденной шины.
    4. Производится монтаж устройства в надежном и удобном месте, девайс фиксируется. Надо заизолировать все электрические цепи, чтобы не допустить их перетирания и утечки тока. Производится диагностика правильности выполненной задачи.
    5. На завершающем этапе настраиваются все каналы для обеспечения рабочего состояния системы. Также надо задать функциональный ряд устройству.


    Эта статья также доступна на следующих языках: Тайский

    • Next

      Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

      • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

        • Next

          В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

    • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
      https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png