Первый по настоящему работоспособный Двигатель Внутреннего Сгорания (ДВС) появился в Германии в 1878 году. Но история создания ДВС уходит своими корнями во Францию. В 1860 году французский изобретатель Этвен Ленуар изобрёл первый двигатель внутреннего сгорания . Но этот агрегат был несовершенен, с низким КПД и не мог быть применён на практике. На помощь пришёл другой французкий изобретатель Бо де Роша , который в 1862 году предложил использовать в этом двигателе четырехтактный цикл:
1. всасывание
2. сжатие
3. горение и расширение
4. выхлоп
Именно эта схема и была использована немецким изобретателем Николаусом Отто , построившим в 1878 г. первый четырехтактный двигатель внутреннего сгорания, КПД которого достигал 22%, что существенно превосходило значения, полученные при использовании двигателей всех предшествующих типов.

Первым автомобилем с четырёхтактным ДВС был трёхколёсный экипаж Карла Бенца , построенный в 1885 году. Годом позже (1886 г) появился вариант

Главное устройство любого транспортного средства, в том числе назем-ного, является силовая установка — двигатель, преобразующий различные разновидности энергии в механическую работу.

В ходе исторического развития транспортных двигателей меха-ническая работа движения осуществлялась за счет применения:

1) мускульной силы человека и животных;

2) силы ветра и потоков воды;

3) тепловой энергии пара и различных видов газообразного, жидкого и твердого топлива;

4) электрической и химической энергии;

5) солнечной и ядерной энергии.

Записи о попытках построить самоходные средства перед-вижения были уже в XV — XVI вв. Правда, силовыми установками этих «средств передвижения» была мускульная сила человека. Одной из первых достаточно хорошо известной самоходной установкой с «мускуль-ным двигателем» является коляска с ручным приводом безногого часовщика из Нюрнберга Стефана Фарфлера, которую он соорудил в 1655 г.

Наибольшую известность в России получила «самобеглая коляска», построенная в Петербурге крестьянином Л. Л. Шамшуренковым в 1752 г.

Эта коляска, вполне вместительная для пере-возки нескольких человек, приводилась в движение мускульной силой двух человек. Первый педальный металлический велосипед, близкий по конструкции к современным, был изготовлен крепостным крестьянином Верхотрусского уезда Пермской губернии Артамоно-вым на рубеже XVIII и XIX вв.


Древнейшими силовыми установками, правда, не транспортны-ми, являются гидравлические двигатели — водяные колеса, приво-дящиеся в движение потоком (весом) падающей воды, а также ветряные двигатели. Сила ветров с древних времен использовалась для движения парусных судов, а значительно позднее и роторных. Использование ветра в роторных судах осуществлялось с помощью вертикальных вращающихся колонн, заменивших паруса.

Появление в XVII в. водяных двигателей, а позднее и паровых сыграло важную роль в зарождении и развитии мануфактурного производства, а затем и промышленной революции. .Однако боль-шие надежды изобретателей самоходных экипажей по применению первых паровых двигателей для транспортных средств не оправда-лись. Первый паровой самоход грузоподъемностью 2,5 т, построен-ный в 1769 г. французским инженером Жозефом Каньо, получился очень громоздким, тихоходным и требующим обязательных оста-новок через каждые 15 минут движения.

Только в конце XIX в. во Франции были созданы весьма удач-ные образцы самоходных экипажей с паровыми двигателями. Начи-ная с 1873 г. французский конструктор Адеме Боле построил неско-лько удачных паровых двигателей. В 1882 г. появились паровые автомобили Дион-Бутона,


а в 1887 — автомобили Леона Серполе, которого называли «апостолом пара». Созданный Серполе котел с плоскими трубками представлял весьма совершенный парогенера-тор с почти мгновенным испарением воды.


Паровые автомобили Серполе конкурировали с бензиновыми автомобилями на многих гонках и скоростных состязаниях вплоть до 1907 г. Вместе с тем совершенствование паровых двигателей в качестве транспортных двигателей продолжается и сегодня в направлении снижения их массогабаритных показателей и повышения коэффициента полез-ного действия.

Совершенствование паровых машин и развитие двигателей внут-реннего сгорания во второй половине XIX в. сопровождалось по-пытками ряда изобретателей использовать электрическую энергию для транспортных двигателей. Накануне третьего тысячелетия Рос-сия отметила столетие со дня использования городского наземного электрического транспорта — трамвая. Немногим более ста лет назад, в 80-е годы XIX в., появились и первые электрические авто-мобили. Их появление связано с созданием в 1860-е годы свинцовых аккумуляторов. Однако слишком большая удельная масса и недо-статочная емкость не позволили электромобилям принять участие в конкуренции с паровыми машинами и газобензиновыми двига-телями. Электромобили с более легкими и энергоемкими серебряно-цинковыми аккумуляторами также не нашли широкого применения. В России талантливый конструктор И. В. Романов создал в конце XIX в. несколько типов электромобилей с достаточно легкими аккумуляторами.


Электромобили имеют достаточно высокие пре-имущества. Прежде всего они экологически чистые, так как вообще не имеют выхлопных газов, обладают очень хорошей тя-говой характеристикой и большими ускорениями за счет возраста-ющего крутящего момента при снижении числа оборотов; исполь-зуют дешевую электроэнергию, просты в управлений, надежны в эксплуатации» и т. д. Сегодня электромобили и троллейбусы имеют серьезные перспективы их развития и применения на го-родском и пригородном транспорте в связи с необходимостью коренного решения проблем по снижению загрязнения окружающей среды.

Попытки создания поршневых двигателей внутреннего сгорания предпринимались еще в конце XVIII в. Так, в 1799 г. англичанин Д. Барбер предложил двигатель, работавший на смеси воздуха с газом, полученным путем перегонки древесины. Другой изобрета-тель газового двигателя Этьен Ленуар использовал в качестве топ-лива светильный газ.



Еще в 1801 г. француз Филипп де Бонне предложил проект газового двигателя, в котором воздух и газ сжимались самостоятельными насосами, подавались в смеситель-ную камеру и оттуда в цилиндр двигателя, где смесь воспламеня-лась от электрической искры. Появление этого проекта считается датой рождения идеи электрического воспламенения топливовоз-душной смеси.

Первый стационарный двигатель нового типа, работающий по четырехтактному циклу с предварительным сжатием смеси, был спроектирован и построен в 1862 г. кельнским механиком Н. Отто.



Практически все современные бензиновые и газовые двигатели до настоящего времени работают по циклу Отто (цикл с подводом теплоты при постоянном объеме).

Практическое применение двигателей внутреннего сгорания для транспортных экипажей началось в 70 — 80 гг. XIX в. на основе использования в качестве топлива газовых и бензовоздушных сме-сей и предварительного сжатия в цилиндрах. Официально изобрета-телями транспортных двигателей, работающих на жидких фракциях перегонки нефти, признаны три немецких конструктора: Готлиб Даймлер, построивший по патенту от 29 августа 1885 г. мотоцикл с бензиновым двигателем;



Карл Бенц, построивший по патенту от 25 марта 1886 г. трехколесный экипаж с бензиновым двигателем;



Рудольф Дизель, получивший в 1892 г. патент на двигатель с само-воспламенением смеси воздуха с жидким топливом за счет теплоты, выделяющейся при сжатии.

Здесь следует отметить, что первые двигатели внутреннего сго-рания, работающие на легких фракциях перегонки нефти, были созданы в России. Так, в 1879 г. русским моряком И. С. Костовичем был спроектирован ив 1885 г. успешно прошел испытания 8-цилин-дровый бензиновый двигатель малой массы и большой мощности. Этот двигатель предназначался для воздухоплавательных аппара-тов.


В 1899 г. в Петербурге создан первый в мире экономичный и работоспособный двигатель с воспламенением от сжатия. Проте-кание рабочего цикла в этом двигателе отличалось от двигателя, предложенного немецким инженером Р. Дизелем, который пред-полагал осуществить цикл Карно со сгоранием по изотерме. В Рос-сии в течение короткого времени была усовершенствована конст-рукция нового двигателя — бескомпрессорного дизеля, и уже в 1901 г. в России были построены бескомпрессорные дизели конструкции Г. В. Тринклера, а конструкции Я. В. Мамина — в 1910 г.

Русский конструктор Е. А. Яковлев спроектировал и построил моторный экипаж с керосиновым двигателем.


Успешно работали над созданием экипажей и двигателей русские изобретатели и конст-рукторы: Ф. А. Блинов, Хайданов, Гурьев, Махчанский и многие Другие.

Основными критериями при конструировании и производстве двигателей вплоть до 70-х годов XX в. оставалось стремле-ние к повышению литровой мощности, а следовательно, и к полу-чению наиболее компактного двигателя. После нефтяного кри-зиса 70 — 80 гг. основным требованием стало получение макси-мальной экономичности. Последние 10 — 15 лет XX в. главными критериями для любого двигателя стали постоянно растущие требования и нормы по экологической чистоте двигателей и преж-де всего по коренному снижению токсичности отработавших газов при обеспечении хорошей экономичности и высокой мощ-ности.

Карбюраторные двигатели, долгие годы не имевшие конкурен-тов по компактности и литровой мощности, не отвечают сегодня экологическим требованиям. Даже карбюраторы с электронным управлением не могут обеспечить выполнение современных требо-ваний по токсичности отработавших газов на большинстве рабочих режимов двигателя. Эти требования и жесткие условия конкуренции на мировом рынке достаточно быстро изменили типаж силовых установок для транспортных средств и прежде всего для легкового транспорта. Сегодня различные системы впрыска топлива с различ-ными системами управления, включая электронные, практически полностью вытеснили использование карбюраторов на двигателях легковых автомобилей.

Коренная перестройка двигателестроения крупнейшими автомо-бильными компаниями мира в последнее десятилетие XX в. совпала с третьим периодом торможения российского двигателестроения. Из-за кризисных явлений в экономике страны отечественная про-мышленность не смогла обеспечить своевременный перевод двига-телестроения на выпуск новых типов двигателей. Вместе с тем Россия имеет хороший научно-исследовательский задел по созда-нию перспективных двигателей и квалифицированные кадры специ-алистов, способных достаточно быстро реализовать имеющийся научный и конструкторский задел в производстве. За последние 8 — 10 лет разработаны и изготовлены принципиально новые опыт-ные образцы двигателей с регулируемым рабочим объемом, а также с регулируемой степенью сжатия. В 1995 г. разработана и внедрена на Заволжском моторном заводе и на Нижне-Новгородском авто-заводе микропроцессорная система управлением топливоподачей и зажиганием, обеспечивающая выполнение экологических норм ЕВРО-1. Разработаны и изготовлены образцы двигателей с микро-процессорной системой управления топливоподачей и нейтрализа-торами, удовлетворяющие экологические требования ЕВРО-2. В этот период учеными и специалистами НАМИ разработаны и созданы: перспективный турбокомпаундный дизель, серия дизель-ных и бензиновых экологически чистых двигателей традиционной компоновки, двигатели, работающие на водородном топливе, пла-вающие транспортные средства высокой проходимости с щадящим воздействием на грунт и т. п.

Современные наземные виды транспорта обязаны своим раз-витием главным образом применению в качестве силовых устано-вок поршневых двигателей внутреннего сгорания. Именно поршне-вые ДВС до настоящего времени являются основным видом сило-вых установок, преимущественно используемых на автомобилях, тракторах, сельскохозяйственных, дорожно-транспортных и стро-ительных машинах. Эта тенденция сохраняется сегодня и будет еще сохраняться в ближайшей перспективе. Основные конкуренты по-ршневых двигателей — газотурбинные и электрические, солнечные и реактивные силовые установки — пока еще не вышли из этапа создания экспериментальных образцов и небольших опытных пар-тий, хотя работы по их доводке и совершенствованию в качестве автотракторных двигателей продолжаются во многих компаниях и фирмах всего мира.

Изначально стоит оговориться, что приписать полное авторство в этой области кому-либо конкретно невозможно.

Например, уже в рукописях Герона Александрийского (150 год до н.э.) было высказано предположение, что возможно использование силы пара для привода механизмов и создания движителя. Позже, подобная мысль одолевала Леонардо да Винчи. В 1643 году Эванджелиста Торричелли описал силовое воздействие давления воздуха. Но они так и остались только авторами идей. Авторами (создателями) ДВС стали другие.

В 1680 году голландец Кристиан Гюйгенс спроектировал первую силовую машину, которая базировалась на явлении расширения газов в цилиндре при взрыве пороха. Фактически это был первый двигатель внутреннего сгорания!

Физик Дени Папен изучал работу поршня в цилиндре. В 1690 году в Марбурге он создал паровой двигатель, который совершал полезную работу за счет нагревания и конденсации пара. Это был один из первых паровых котлов. Конструкцию паровой машины (цилиндр и поршень) Дени Папену подсказал Лейбниц. Столетия силами многих инженеров паровая машина усовершенствовалась, среди них был и Джеймс Уатт, впервые использовавший термин «лошадиная сила» для обозначения мощности.

Небольшие мастерские не всегда могли воспользоваться паровым двигателем. Дело в том, что такой двигатель имел очень невысокий КПД (менее 10%). Кроме того, его использование было связано с большими затратами и хлопотами: для того чтобы запустить его в ход, необходимо было развести огонь и навести пары. Даже если машина была нужна только временами, её все равно приходилось постоянно держать под парами. Это было неудобно. Для мелкой промышленности требовался двигатель небольшой силы, занимающий мало места, который можно было бы запускать и останавливать в любое время и без долгой подготовки.

Алессандро Вольта (1777 год): в капсуле подрывалась с помощью электрической искры смесь воздуха с каменноугольным газом. В 1807 году швейцарец Исаак де Ривац получил патент на использование смеси воздуха с каменноугольным газом как средства генерации механической энергии.

1801 год. Филипп Лебон

В последний год XVIII века французский инженер Филипп Лебон (1769-1804) открыл светильный газ. Традиция приписывает его успех случайности: Лебон увидел, как вспыхнул газ, истекавший из поставленного на огонь сосуда с древесными опилками, и понял, какую пользу можно извлечь из этого явления. В 1799 году он получил патент на использование и способ получения светильного газа путем сухой перегонки древесины или угля. Это открытие имело огромное значение, прежде всего, для развития техники освещения. Во Франции, а потом и в других странах Европы газовые лампы стали успешно конкурировать со свечами. Однако светильный газ годился не только для освещения. В 1801 году Лебон взял патент на конструкцию газового двигателя. Принцип действия этой машины основывался на известном свойстве открытого им газа: его смесь с воздухом взрывалась при воспламенении с выделением большого количества теплоты. Продукты горения стремительно расширялись, оказывая сильное давление на окружающую среду. Создав соответствующие условия, можно использовать выделяющуюся энергию в интересах человека.

В двигателе Лебона были предусмотрены два компрессора и камера смешения. Один компрессор должен был накачивать в камеру сжатый воздух, а другой - сжатый светильный газ из газогенератора. Газовоздушная смесь поступала потом в рабочий цилиндр, где воспламенялась. Двигатель был двойного действия, то есть попеременно действовавшие рабочие камеры находились по обе стороны поршня. По существу, Лебон вынашивал мысль о двигателе внутреннего сгорания, однако в 1804 году он погиб, не успев воплотить в жизнь своё изобретение.

Но идея его продолжала жить! Действительно, принцип действия газового двигателя намного проще, чем паровой машины, так как здесь топливо само непосредственно производит давление на поршень, тогда как в паровом двигателе тепловая энергия сначала передаётся носителю - водяному пару, который и совершает полезную работу. В последующие годы несколько изобретателей из разных стран пытались создать работоспособный двигатель на светильном газе. Однако все эти попытки не привели к появлению на рынке двигателей, которые могли бы успешно конкурировать с паровыми.

Следующий крупный шаг был сделан в 1825 году, когда Майкл Фарадей получил из каменного угля бензол — первое жидкое топливо для двигателя внутреннего сгорания.

1862 год. Этьенн Ленуар

Этьенн Ленуар (1822-1900) вынужден был оставить свою мечту стать инженером и начал работать официантом в довольно непритязательном ресторане "Холостой парижанин". Среди завсегдатаев заведения часто встречались владельцы мастерских и механики. Так, подавая закуски и разнося спиртное, молодой человек жил проблемами механиков и инженеров, а в его голове уже начинал рождаться смелый план по принципиальному усовершенствованию такой диковинки, как двигатель. Вскоре, оставив место гарсона, Ленуар поступил на работу в одну из мастерских, где его обязанностью стало составление новых эмалей. Примерно через год, поссорившись с хозяином, Ленуар стал механиком-одиночкой, чинившим всё подряд - от экипажей до отхожих мест и кухонной утвари. Поработав какое-то время и не добившись ни благодарности, ни денег, он поступил в механическое и литейное заведение итальянца Маринони, которое с помощью Ленуара преобразилось в гальванопластическую мастерскую. Наконец-то, Ленуар повёл безбедную жизнь и получил возможности для экспериментального изобретательства. В то время он создал свои вариации маломощного электромотора, регулятора динамомашин, водомера. Ленуар запатентовал все свои изобретения и продолжал опыты.

Первый, опытный образец двигателя приятно удивил Ленуара и его спонсора Маринони своей безшумностью. Были и минусы - он слишком быстро нагревался во время работы и требовал принципиально другого охлаждения. Из-за юридической промашки машина Ленуара была опечатана, однако (нет худа без добра), именно это подтолкнуло его к созданию собственной фирмы. И очень скоро начала работу фирма по выпуску газовых двигателей «Ленуар и Ко». Мотор Ленуара, мощностью в 4 лошадиные силы, производили французские фирмы «Маринони», «Лефевр», «Готье» и немецкая фирма «Кун».

В 1860 году Ленуар получил патент на своё изобретение, и в том же году с двигателем познакомился немецкий инженер Отто, создавший впоследствии вместе с Лангеном фирму для производства таких двигателей. Именно эта фирма, поначалу прославившая труд Ленуара, впоследствии отнимет его лавры.

Машина Ленуара с успехом демонстрировалась на Парижской выставке 1862 года. Французский журнал «Иллюстрасьон» предложил публике чертёж и описание омнибуса Ленуара — трехколесного восьмиместного экипажа с этим двигателем. Это было интересное время - время инженерных дерзаний и неисчерпаемых идей и возможностей. Самые смелые и революционные решения не давали покоя гениальным "технарям" по всему свету - впереди была эра прогресса. В декабре 1872 года газовый двигатель Ленуара был установлен на дирижабле, испытания прошли успешно. Однако, слава Ленуара была недолгой - уже в 1878 году его обошли немцы - шумная и громоздкая 4-тактная машина его бывшего коллеги Отто с большим вертикальным колесом маховика, работала с КПД равным 16%, тогда как в двухтактном двигателе Ленуара он достиг лишь 5%. Безусловно, рекорд был побит.

1878 год. Август Отто и его такты

В 1864 году Август Отто получил патент на свою модель газового двигателя и в том же году заключил договор с богатым инженером Лангеном для эксплуатации этого изобретения. Вскоре была создана фирма «Отто и Компания». На первый взгляд, двигатель Отто представлял собой шаг назад по сравнению с двигателем Ленуара. Цилиндр был вертикальным. Вращаемый вал помещался над цилиндром сбоку. Вдоль оси поршня к нему была прикреплена рейка, связанная с валом. Двигатель работал следующим образом. Вращающийся вал поднимал поршень, в результате чего под поршнем образовывалось разряженное пространство и происходило всасывание смеси воздуха и газа. Затем смесь воспламенялась.

Ни Отто, ни Ланген не владели достаточными знаниями в области электротехники и отказались от электрического зажигания. Воспламенение они осуществляли открытым пламенем через трубку. При взрыве давление под поршнем возрастало примерно до 4 атм. Под действием этого давления поршень поднимался до тех пор пока под ним не создавалось разряжение. Таким образом, энергия сгоревшего топлива использовалась в двигателе с максимальной полнотой. В этом заключалась главная оригинальная находка Отто. Рабочий ход поршня вниз начинался под действием атмосферного давления, открывался выпускной вентиль, и поршень своей массой вытеснял отработанные газы. Из-за более полного расширения продуктов сгорания КПД этого двигателя был значительно выше, чем КПД двигателя Ленуара и достигал 16%, то есть превосходил КПД самых лучших паровых машин того времени.

Наиболее сложной проблемой при такой конструкции двигателя было создание механизма передачи движения рейки на вал. Для этой цели было изобретено особое передаточное устройство с шариками и сухариками. Когда поршень с рейкой взлетал вверх, сухарики, охватывавшие вал своими наклонными поверхностями, так взаимодействовали с шариками, что те не препятствовали перемещению рейки, но как только рейка начинала двигаться вниз, шарики скатывались по наклонной поверхности сухариков и плотно прижимали их к валу, вынуждая его вращаться. Эта конструкция обеспечивала жизнеспособность двигателя.

Поскольку двигатели Отто были почти в 5 раз экономичнее двигателей Ленуара, они сразу стали пользоваться большим спросом. В последующие годы их было выпущено около пяти тысяч штук. Отто упорно работал над усовершенствованием их конструкции.

Вскоре зубчатую рейку заменила кривошипно-шатунная передача (многих смущал вид рейки, взлетавшей вверх в течение долей секунды, к тому же её движение сопровождалось неприятным дребезжащим грохотом).

Но самое существенное из его изобретений было сделано в 1877 году, когда Отто взял патент на новый двигатель с четырехтактным циклом. Этот цикл по сей день лежит в основе работы большинства газовых и бензиновых двигателей. И в 1878 году новые двигатели уже были запущены в производство.

Во всех более ранних газовых двигателях смесь газа и воздуха зажигалась в рабочем цилиндре при атмосферном давлении. Однако действие взрыва было тем сильнее, чем давление было больше. Следовательно, при сжимании смеси взрыв должен был быть более сильным. В новом газовом двигателе Отто, газ сжимался до 3 атм., вследствие чего двигатель стал меньше по размерам, но его мощность возросла.

Для того чтобы сделать вращение вала более равномерным, его снабжали массивным маховиком. Ведь из четырех ходов поршня только один соответствовал полезной работе, и маховик должен был давать энергию для трёх последующих ходов (или, что то же самое, во время 1,5 оборотов). Воспламенение смеси производилось, как и прежде, открытым пламенем. Из-за кривошипно-шатунного соединения с валом получить расширение газа до атмосферного не удавалось, и поэтому КПД двигателя был ненамного выше, чем у предыдущих моделей. Зато он оказался самым высоким для тепловых двигателей того времени.

Четырёхтактный цикл был самым большим техническим достижением Отто. Но вскоре обнаружилось, что за несколько лет до его изобретения точно такой же принцип работы двигателя был описан французским инженером Во де Рошем. Группа французских промышленников оспорила в суде патент Отто. Суд счёл их доводы убедительными. Права Отто, вытекавшие из его патента, были значительно сокращены, в том числе было аннулировано его монопольное право на четырехтактный цикл. Отто болезненно переживал эту неудачу, между тем дела его фирмы шли совсем не плохо. Хотя конкуренты наладили выпуск четырехтактных двигателей, отработанная многолетним производством модель Отто всё равно была лучшей, и спрос на неё не прекращался. К 1897 году было выпущено около 42 тысяч таких двигателей разной мощности.

Однако то обстоятельство, что в качестве топлива использовался светильный газ, сильно суживало область применения первых двигателей внутреннего сгорания. Количество светильногазовых заводов было незначительно даже в Европе, а в России их вообще было только два - в Москве и в Петербурге. Поэтому не прекращались поиски нового горючего для двигателя внутреннего сгорания. Некоторые изобретатели пытались применить в качестве газа пары жидкого топлива. Еще в 1872 году американец Брайтон пытался использовать в этом качестве керосин. Однако керосин плохо испарялся, и Брайтон перешел к более легкому нефтепродукту - бензину. Но для того, чтобы двигатель на жидком топливе мог успешно конкурировать с газовым, необходимо было создать специальное устройство (впоследствии оно стало называться карбюратором) для испарения бензина и получения горючей смеси его с воздухом. Брайтон в том же 1872 году придумал один из первых так называемых «испарительных» карбюраторов, но он действовал неудовлетворительно.


Немец Майбах предложил не испарять бензин, а мелко распылять его в воздухе. Это обеспечивало равномерное распределение смеси по цилиндру, а само испарение происходило уже в цилиндре под действием тепла сжатия. Для обеспечения распыления всасывание бензина происходило потоком воздуха через дозирующий жиклёр. Жиклёр выполнялся в виде одного или нескольких отверстий в трубке, располагавшейся перпендикулярно потоку воздуха. Для поддержания напора был предусмотрен маленький бачок с поплавком, который поддерживал уровень на заданной высоте, так что количество всасываемого бензина было пропорционально количеству поступающего воздуха. Карбюратор таким образом состоял из двух частей: поплавковой камеры и смесительной камеры. В камеру топливо свободно поступало из бака по трубке и держалось на одном уровне поплавком, который поднимался вместе с уровнем топлива и при наполнении, с помощью рычага, опускал иглу и тем закрывал доступ топливу. Количество доставляемой в цилиндр смеси регулировалось поворачиванием заслонки (дросселя).

Немецкий инженер Юлиус Даймлер . много лет работал в фирме Отто и был членом её правления. В начале 80-х годов он предложил своему шефу проект компактного бензинового двигателя, который можно было бы использовать на транспорте. Отто (как в свое время Уатт в аналогичной ситуации) отнесся к предложению Даймлера холодно. Тогда Даймлер вместе со своим другом Вильгельмом Майбахом принял смелое решение - 1882 году они ушли из фирмы Отто, приобрели небольшую мастерскую близ Штутгарта. В 1883 году был создан первый бензиновый двигатель с зажиганием от раскаленной полой трубочки, открытой в цилиндр.

Между тем другой немец, Карл Бенц, владелец компании "Бенц и К" в Мангейме, разработал свой двигатель с электрическим зажиганием. В 1886 году он выпустил трехколесный автомобиль, который может считаться первым настоящим автомобилем. В том же году Даймлер встроил двигатель в кузов.

Первые двигатели внутреннего сгорания были одноцилиндровыми, и, для того чтобы увеличить мощность двигателя, обычно увеличивали объём цилиндра. Потом этого стали добиваться увеличением числа цилиндров. В конце XIX века появились двухцилиндровые двигатели, а с начала XX столетия стали распространяться четырёхцилиндровые. Последние устраивались таким образом, что в каждом из цилиндров четырёхтактный цикл был сдвинут на один ход поршня. Благодаря этому достигалась хорошая равномерность вращения коленчатого вала.

История создания дизельного двигателя.

В наше время слово "дизель" у большинства людей вызывает ассоциации лишь с двигателем внутреннего сгорания с воспламенением от сжатия, работающим на жидком топливе. И немногие знают, что этот двигатель назван в честь немецкого изобретателя - Рудольфа Кристиана Карла Дизеля (1858-1913 г.г.)

Родители Рудольфа были переплетчиками, книготорговцами. Свою родословную семья ведёт из тюрингского городка Пёснека (Германия). Однако родился Рудольф в Париже 18 марта 1858 г.

Семья его отца, Теодора Дизеля, много лет жила в этом городе, и никто не вспоминал, что они немцы. Но в 1870 г. началась франко-прусская война и пришлось Дизелям перебраться в Англию. Позже мальчика отправили к родственникам, в город Аугсбург (Германия). Там Рудольф с отличием оканчивает Высшую Политехническую школу в Мюнхене. Музыка, поэзия и изобразительное искусство привлекали Рудольфа столь же сильно, как и математика. Работоспособность юноши была феноменальной, а упорство в достижении цели ошеломляло знакомых.

Вскоре профессор Карл фон Линде предложил ему место директора в парижском отделении своей фирмы. Изобретатель "холодильника Линде" заинтересовал Дизеля проблемами тепловых двигателей - паровых машин и моторов внутреннего сгорания, только что появившихся благодаря изобретениям Николауса Августа Отто.

За 10 лет Дизель разработал сотни чертежей и расчётов двигателя абсорбционного типа, работавшего на аммиаке. Фантазия молодого инженера не знала границ - от миниатюрных моторчиков для швейных машин до гигантских стационарных агрегатов, использующих солнечную энергию! И всё же Дизелю никак не удавалось создать, хотя бы на бумаге эффективный двигатель.

Задавшись целью построить экономичный двигатель, предложенный еще в 1824 г. французским офицером Никола Леонаром Сади Карно (1796-1832), Дизель тщательно изучил его единственный, безсмертный трактат "Размышления о движущей силе огня и о машинах, способных использовать эту силу". По мысли Карно, в максимально экономичном двигателе нагревать рабочее тело до температуры горения топлива необходимо лишь "изменением объема", т.е. быстрым сжатием. Когда же топливо вспыхнет, надо ухитриться поддерживать температуру постоянной. А это возможно только при одновременном сгорании топлива и расширении нагреваемого газа.

В 1890 г. Рудольф переехал в Берлин и... заменил аммиак сильно нагретым сжатым воздухом. "В неустанной погоне за целью, в итоге безконечных расчётов родилась наконец-то идея, наполнившая меня огромной радостью, - писал изобретатель. Нужно вместо аммиака взять сжатый горячий воздух, ввести в него распылённое топливо, и одновременно со сгоранием, расширить горящую смесь так, чтобы как можно больше тепла использовать для полезной работы."

В 1892 г. Дизель получил патент, оказавшийся одним из самых дорогостоящих в мире. А затем опубликовал описание двигателя. "Моя идея, писал он семье, настолько опережает всё, что создано в данной области до сих пор, что можно смело сказать - я первый в этом новом и наиважнейшем разделе техники на нашем маленьком Земном шарике! Я иду впереди лучших умов человечества по обе стороны океана!"

Никогда ещё теоретические построения не вызывали такого огромного интереса среди специалистов. Однако большинство оценивало идею как практически неосуществимую. Но были и другие примеры. "Я прочел вашу работу с большим интересом: так радикально и смело ещё никто, кто предрекал паровому двигателю закат, не выступал. А такой смелости будет принадлежать и победа!"- писал профессор М. Шраттер. Дизель верил в свою машину...

1893 год. Дизельный двигатель. Этап 1.

Первый опытный двигатель был построен уже в 1893 г. в Аугсбурге. Постройкой руководил сам Дизель. Сразу же приступили к испытаниям, однако первый опытный образец взорвался, изобретатель и его помощник чуть не погибли. Двигатель использовал в качестве топлива буроугольную пыль и был без водяного охлаждения стенок цилиндра.

Не достигнув положительного результата на угольной пыли, Рудольф Дизель, после попытки использовать светильный газ, окончательно остановил свой выбор на жидком топливе.

1894 год. Дизельный двигатель. Этап 2.

В феврале 1894 года начались испытания второго опытного образца двигателя, в котором в качестве топлива использовался уже керосин.

1895 год. Дизельный двигатель. Этап 3.

После первых двух неудач он сконструировал третью модель. "Первый двигатель не работает, второй работает несовершенно, третий будет хорош!" - говорил Дизель своему коллеге Фогелю. В 1895 г. закончилась сборка третьего образца, содержащего уже все основные элементы будущего дизель-мотора. Он действительно оказался хорош! Но при его создании Дизелю пришлось отказаться от многих своих первоначальных замыслов. Например, совершенно не удалось ему достичь ожидаемых результатов от работы двигателя без водяного охлаждения. Хотя возможность такой работы, предсказанная Дизелем теоретически, и была во время испытаний доказана, но опыты убедили его, что осуществлять на практике это нецелесообразно. Положительные результаты появились лишь после того, как двигатель оборудовали водяным охлаждением, а подачу жидкого топлива в цилиндр и его распыливание стали выполнять при помощи сжатого воздуха. По поводу введения водяного охлаждения Дизель, поясняя работу и результаты испытаний первого опытного двигателя в своем докладе на съезде Союза германских инженеров, скажет следующее: "Обращаю внимание на то, что эта машина работала без водяной рубашки и что, таким образом, была доказана возможность работать без водяного охлаждения, предусмотренная теоретически. По практическим соображениям, при дальнейших выполнениях машины, была применена водяная охлаждающая рубашка, которая главным образом даёт возможность получать при тех же размерах цилиндра большую работу."

1896 год. Дизельный двигатель. Этап 4.

В конце 1896 г. был построен окончательный, четвёртый вариант опытного двигателя мощностью 20 л.с.

При официальных испытаниях в феврале 1897 г., проводившихся под руководством профессора М. Шрётера, этот двигатель расходовал 240 г керосина на 1 л.с. в час, эффективный КПД его составил 26%. Таких показателей не имел ещё ни один из существоваших на то время двигателей. Работа двигателя осуществлялась за четыре такта. За первый ход поршня в цилиндр всасывался воздух, за второй он сжимался приблизительно до 4 МПа, нагреваясь при этом примерно до 600°С. И в среду разогретого сжатием воздуха через форсунку (сжатым воздухом под давлением 5-6 МПа) начинало вводиться жидкое топливо (керосин). Попадая в разогретый воздух, топливо самовоспламенялось и горело почти при постоянном давлении (но не при постоянной температуре, как ожидал Дизель, патентуя цикл). Подача керосина в цилиндр продолжалась примерно 1/5 часть третьего хода поршня. На остальной части хода, происходило расширение продуктов сгорания. За четвертый ход поршня - осуществлялся выпуск сгоревшего топлива в атмосферу. Рабочий цикл созданного двигателя сильно отличался от запатентованного.

Выставка паровых машин 1898 года в Мюнхене стала кульминацией невероятного успеха Дизеля. Заказы на двигатель приобретали немецкиие и иностранные предприятия нарасхват. На 39-летнего инженера обрушился золотой дождь!!!

Забросив исследования, Дизель ударился в коммерцию. Обладая уже шестимиллионным состоянием, он основал предприятие по строительству электропоездов, финансировал католические лотереи, покупал и продавал всевозможные фирмы. Но поразительно - ещё ни один мотор "системы Дизеля" к тому времени даже не был продан!

Скандал разразился, когда первые дизели оказались не в состоянии работать. Отменяются соглашения, приостанавливаются выплаты Дизелю. Принадлежавшая изобретателю Аугсбургская фабрика обанкротилась. Из-за обилия мелких неполадок дизель-мотор подорвал своё реноме. Необходимая точность при изготовлении ряда деталей значительно превышала уровень возможностей большинства заводов. Помимо технологических трудностей, встал вопрос о создании новых жаростойких материалов. Некоторые фирмы заявили о "непригодности" дизель-моторов для серийного производства...

Столкнувшись со стеной недоброжелательства в Германии, Дизель наладил взаимоотношения с зарубежными промышленниками. Во Франции, Швейцарии, Австрии, Бельгии, России и Америке.

1903 год. Приключение дизеля в России.

Как только промышленный мир облетела весть о новом двигателе, Эммануэль Нобель, владелец машиностроительного завода в Петербурге, сразу же понял, что в России дизелям уготовано большое будущее. Потому что в России находятся неисчерпаемые запасы нефти, которая даже в чистом виде, без переработки, способна стать топливом для нового двигателя. Ну и, конечно же, была в том выгода не только для всей Руси великой, но и конкретно для семейства Нобелей, владеющего нефтеперерабатывающим товариществом «Братья Нобель». И в 1897 году Эммануэль Нобель попытался приобрести патент на изготовление двигателя в России. Однако Дизель, купавшийся тогда в лучах всемирной славы, запросил запредельную цену - полмиллиона рублей золотом. Рачительный швед решил подождать более подходящего для сделки момента. Через год конструктор, получивший реалистические представления о законах бизнеса, снизил цену до 800 тыс. марок.

Приобретя патент, Нобель совершил акт неслыханного альтруизма: он предложил всем российским заводам соответствующего профиля, воспользовавшись чертежами патента, начать производство дизельных двигателей. Однако в связи с тем, что к тому моменту авторитет двигателя на Западе сильно пошатнулся, желающих не нашлось. И инженеры завода Нобеля начали самостоятельно разрабатывать модификацию двигателя, работающего на нефти. В ноябре 1899 года «нефтяной» дизель мощностью 20 л.с. был готов. В 1900 году на Парижской выставке его главный конструктор профессор Георгий Филиппович Депп доказал, что русский дизель превосходит зарубежные аналоги. Главной задачей для Нобеля было получение заказа военного ведомства на установку дизелей на военные корабли. В 1903 году в Петербурге, а также на Коломенском машиностроительном заводе начали выпускаться двигатели мощностью 150 л.с. Вначале дизели были установлены на два судна товарищества Нобелей - «Вандал» и «Сармат». Преимущества нефтяного двигателя по сравнению с паровой машиной были настолько очевидны, что владельцы пароходных компаний начали наперегонки оснащать дизелями свои суда.

Пока европейские державы спорили, кому взяться за производство моторов а-ля Дизель, их серийное производство наладила Россия, причем сразу нескольких типов: стационарный, быстроходный, судовой, реверсивный и пр. Дизель-моторы производили заводы в Коломне, Риге, Николаеве, Харькове и, конечно, завод «Людвиг Нобель» в Санкт-Петербурге (нефть Нобелей в моторах Нобелей для денег Нобелей) . В Европе дизель-мотор даже стали называть «русским двигателем». Дизель с удовольствием сотрудничал с русскими промышленниками - они единственные, кто регулярно платил изобретателю причитающиеся ему дивиденды.

Продолжение

"Изобретение... никогда не было лишь продуктом творческого воображения: оно представляет собой результат взаимосвязи между отвлеченной мыслью и материальным миром... Изобретателем история считает не того, кто с той или иной степенью определенности высказал первый подобные идеи, а того, кто осуществил свою идею, мелькнувшую, может быть, в уме множества других людей..."

Появление недорогого в эксплуатации двигателя означало победу нефти над углем, следовательно это не нравилось хозяевам угольного Рура. Несмотря на успехи нового типа двигателя, нападки недоброжелателей на Рудольфа Дизеля и его двигатель не ослабевали: "Дизель ничего не изобрел... он лишь собрал изобретения..."

В 1912 г., Рудольф Дизель приезжает в Америку. Инженерная общественность мира привыкла видеть в нем крупного преуспевающего специалиста, находящегося в зените славы,- недаром нью-йоркские газеты оповестили своих читателей о приезде "доктора Дизеля - знаменитого дипломированного инженера из Мюнхена". В лекционных залах, где он выступал с докладами, в вестибюлях гостиниц и фойе театров - всюду его осаждали корреспонденты. Сам Эдисон - чародей американского изобретательства - тогда публично заявил, что двигатель Рудольфа Дизеля является вехой в истории человечества.

Корректный, сдержанный, одетый в строгий черный фрак, Дизель стоически переносил длинные и высокопарные представления его публике. И ни один из слушавших его выступление американских инженеров не мог даже заподозрить тогда, что блестящий докладчик, рассказывающий на прекрасном английском языке о перспективах своего двигателя, находился в отчаянном положении, близком к полному краху и ни единым словом не обмолвился он о тех трудностях, промахах, неудачах, нападках и недоверии, с которым входило в жизнь его изобретение.

И в то же время, предвидя или предчувствуя неотвратимость своего краха, сразу по возвращении в Мюнхен Дизель на занятые в долг деньги покупает акции электромобильной фирмы, которая вскоре обанкротилась. В результате ему пришлось рассчитать почти всю прислугу и заложить дом, чтобы реализовать свой последний план, в который не был посвящен никто. Следующий год Дизель начал с разъездов: сначала он один побывал в Париже, Берлине, Амстердаме, а затем вместе с женой посетил Сицилию, Неаполь, Капри, Рим. "Мы можем попрощаться с этими местами. Больше мы их никогда не увидим". Такую странную фразу он обронил однажды, но жена тогда не обратила на неё внимания, а вспомнила и поняла её лишь позднее, когда уже всё произошло. Затем Дизель едет в Баварские Альпы к Зульцеру, на заводе которого когда-то проходил инженерную практику. Старых друзей поразили перемены, происшедшие за последнее время с Рудольфом. Всегда сдержанный и осторожный, он как будто без следа утратил эти качества и с видимым удовольствием стремился в опасные горные путешествия, предавался рискованным мероприятиям.

К концу лета 1913 г. разразился финансовый кризис. Дизель стал полным банкротом. И вот в этот момент, ещё совсем недавно отказавшийся от хорошо оплачиваемых должностей в американских фирмах, он вдруг даёт согласие на предложение нового двигателестроительного завода в Англии занять у них должность всего лишь инженера-консультанта. Узнав об этом, Британский королевский автоклуб обратился к нему с просьбой сделать доклад на одном из заседаний клуба, на что Дизель также ответил согласием и начал готовиться к поездке в Англию. В этот небольшой промежуток времени он совершает некоторые поступки, анализируя которые впоследствии, близкие Рудольфа Дизеля придут к выводу, что трагическое решение им уже было принято.

Проводив жену погостить к матери, он остался к началу сентября один в своем мюнхенском доме. Первое, что он сразу же при этом сделал,- отпустил до утра из дома оставшихся немногочисленных слуг и попросил старшего сына (тоже Рудольфа) срочно приехать к нему. По воспоминаниям сына, это была странная и печальная встреча. Отец показывал ему, что и где лежит в доме, в каких шкафах хранятся важные бумаги, давал соответствующие ключи и просил опробовать замки. После отъезда сына он занялся просмотром деловых документов, а вернувшаяся на следующее утро прислуга обнаружила, что камин забит пеплом сожженных бумаг, сам же хозяин находился в мрачном, подавленном состоянии.

Через несколько дней Дизель уехал во Франкфурт к дочери, где его уже ждала жена. Побыв с ними несколько дней, он уехал один 26 сентября в Гент, откуда отправил письмо жене и несколько открыток друзьям. Письмо было странным, смятённым и свидетельствовало о сильном расстройстве его автора.

29 сентября 1913 г. в Антверпене Дизель готовился к отплытию паром "Дрезден"... На верхней палубе ужин прошёл довольно непринужденно. Дизель рассказывал своим попутчикам о жене, о своих изобретениях. Но их интересовала политика. Уинстон Черчилль, назначенный лордом адмиралтейства, затеял реконструкцию английского флота, и это очень безпокоило двух новых знакомых Дизеля. Они были немцами, а война на Балканах виделась первой искрой будущей войны между Германией и Англией. Черчилль собирался перестраивать английский флот. Тонкий политик, он предчувствовал войну с Германией. Потому вошел в контакт с талантливым инженером Дизелем, ибо знал, что в кайзеровской Германии на броненосцы, в частности на «Принца-регента», уже поставлен многоцилиндровый судовой двигатель, спроектированный Дизелем, который давал значительное превосходство в скорости. Кроме того, двигатели Дизеля спешно приспосабливали для подводных лодок. Так что, возможно, не так уж случайно на борту немецкого парохода попутчиками Дизеля оказались двое немцев, готовые на всё ради Германии.

Около десяти вечера Рудольф Дизель раскланялся со своими знакомыми и спустился в каюту. Перед тем, как открыть дверь, он остановил стюарда и попросил разбудить его утром ровно в 6:15. В каюте он вынул из чемодана пижаму и разложил ее на постели. Извлек из кармана часы, завёл их и повесил на стенку рядом с подушкой… И больше его никто не видел.

Осмотр каюты показал: койка, приготовленная стюардом для сна, даже не смята; багаж не раскрыт, хотя в замок чемодана ключ вставлен; карманные часы Дизеля были положены так, чтобы стрелки можно было видеть будучи лежа на койке; записная книжка лежала раскрытой на столе и дата 29 сентября в ней отмечена крестиком. Выяснилось сразу же, что во время утреннего обхода судна дежурный офицер обнаружил чью-то шляпу и свернутое пальто, засунутыми под рельсы. Оказалось, что они принадлежали Дизелю.

Через десять дней команда маленького бельгийского лоцманского катера извлекла из волн Северного моря труп. Моряки сняли с распухших пальцев погибшего кольца, в карманах нашли кошелёк, футляр для очков и карманную аптечку. Тело, следуя морскому обычаю, отдали морю. Прибывший в Бельгию по вызову сын Рудольфа Дизеля - подтвердил, что все эти вещи принадлежали его отцу.

Родственники Дизеля были убеждены, что он покончил с собой. В пользу этой версии говорило не только странное и непонятное поведение Дизеля в последний год жизни, но также выяснившиеся позднее некоторые обстоятельства. Так, перед своим отъездом он подарил жене чемодан и просил не открывать его несколько дней. В чемодане оказалось 20 тысяч марок. Это было всё, что осталось от громадного состояния Дизеля. И еще: отправляясь в Англию, Дизель взял с собой не золотые часы, как обычно, а карманные стальные...

Заключение.

Мир воздал Рудольфу Дизелю довольно редкую в истории техники честь: начал писать его имя с маленькой буквы. Это - шаг в вечность...

Паром "Дрезден"

Это вступительная часть цикла статей посвящённых Двигателю Внутреннего Сгорания , являющаяся кратким экскурсом в историю, повествующая об эволюции ДВС. Так же, в статье будут затронуты первые автомобили.

В следующих частях будут подробно описаны различные ДВС:

Шатунно-поршневые
Роторные
Турбореактивные
Реактивные

Двигатель был установлен на лодку, которая смогла подняться вверх по течению реки Сона . Спустя год, после испытаний, братья получили патент на своё изобретение, подписаный Наполеоном Бонопартом, сроком на 10 лет.

Правильнее всего, было бы назвать этот двигатель реактивным, так как его работа заключалась в выталкивании воды из трубы находящейся под днищем лодки…

Двигатель состоял из камеры поджигания и камеры сгорания, сильфона для нагнетания воздуха, топливо-раздаточного устройства и устройства зажигания. Топливом для двигателя служила угольная пыль.

Сильфон впрыскивал струю воздуха смешанную с угольной пылью в камеру поджигания где тлеющий фитиль зажигал смесь. После этого, частично подожжённая смесь (угольная пыль горит относительно медленно) попадала в камеру сгорания где полностью прогорала и происходило расширение.
Далее давление газов выталкивало воду из выхлопной трубы, что заставляло лодку двигаться, после этого цикл повторялся.
Двигатель работал в импульсном режиме с частотой ~12 и/минуту.

Спустя некоторое время, братья усовершенствовали топливо добавив в него смолу, а позже заменили его нефтью и сконструировали простую систему впрыска .
В течении следующих десяти лет проект не получил никакого развития. Клод уехал в Англию с целью продвижения идеи двигателя, но растратил все деньги и ничего не добился, а Джозеф занялся фотографией и стал автором первой в мире фотографии «Вид из окна» .

Во Франции, в доме-музее Ньепсов, выставлена реплика «Pyreolophore».

Чуть позже, де Рива водрузил свой двигатель на четырёхколёсную повозку, которая, по мнению историков, стала первым автомобилем с ДВС.

Про Алессандро Вольта

Вольта впервые поместил пластины из цинка и меди в кислоту, чтобы получить непрерывный электрический ток, создав первый в мире химический источник тока («Вольтов столб») .

В 1776 г. Вольта изобрел газовый пистолет - «пистолет Вольты», в котором газ взрывался от электрической искры.

В 1800 году построил химическую батарею, что позволило получать электричество с помощью химических реакций.

Именем Вольты названа единица измерения электрического напряжения - Вольт.


A - цилиндр, B - «свеча» зажигания, C - поршень, D - «воздушный» шар с водородом, E - храповик, F - клапан сброса отработанных газов, G - рукоятка для управления клапаном.

Водород хранился в «воздушном» шаре соединённым трубой с цилиндром. Подача топлива и воздуха, а так же поджиг смеси и выброс отработанных газов осуществлялись вручную, с помощью рычагов.

Принцип работы:

Через клапан сброса отработанных газов в камеру сгорания поступал воздух.
Клапан закрывался.
Открывался кран подачи водорода из шара.
Кран закрывался.
Нажатием на кнопку подавался электрический разряд на «свечу».
Смесь вспыхивала и поднимала поршень вверх.
Открывался клапан сброса отработанных газов.
Поршень падал под собственным весом (он был тяжёлый) и тянул верёвку, которая через блок поворачивала колёса.

После этого цикл повторялся.

В 1813 году де Рива построил ещё один автомобиль. Это была повозка длиной около шести метров, с колесами двухметрового диаметра и весившея почти тонну.
Машина смогла проехать 26 метров с грузом камней (около 700 фунтов) и четырьмя мужчинами, со скоростью 3 км/ч.
С каждым циклом, машина перемещалась на 4-6 метров.

Мало кто из его современников серьезно относился к этому изобретению, а Французская Академия Наук утверждала, что двигатель внутреннего сгорания никогда не будет конкурировать по производительности с паровой машиной.

В 1833 году , американский изобретатель Лемюэль Веллман Райт , зарегистрировал патент на двухтактный газовый двигатель внутреннего сгорания с водяным охлаждением.
(см. ниже) в своей книге «Gas and Oil Engines» написал о двигателе Райта следующее:

«Чертеж двигателя весьма функционален, а детали тщательно проработаны. Взрыв смеси действует непосредственно на поршень, который через шатун вращает кривошипный вал. По внешнему виду двигатель напоминает паровую машину высокого давления, в которой газ и воздух подаются с помощью насосов из отдельных резервуаров. Смесь, находящаяся в сферических ёмкостях поджигалась во время подъёма поршня в ВМТ (верхняя мёртвая точка) и толкала его вниз/вверх. В конце такта открывался клапан и выбрасывал выхлопные газы в атмосферу.»

Неизвестно, был ли когда-либо этот двигатель построен, однако есть его чертёж:

В 1838 году , английский инженер Уильям Барнетт получил патент на три двигателя внутреннего сгорания.

Первый двигатель - двухтактный одностороннего действия (топливо горело только с одной стороны поршня) с отдельными насосами для газа и воздуха. Поджиг смеси происходил в отдельном цилиндре, а потом горящая смесь перетекала в рабочий цилиндр. Впуск и выпуск осуществлялся через механические клапана.

Второй двигатель повторял первый, но был двойного действия, то есть горение происходило попеременно с обоих сторон поршня.

Третий двигатель, так же был двойного действия, но имел впускные и выпускные окна в стенках цилиндра открывающееся в момент достижения поршнем крайней точки (как в современных двухтактниках). Это позволяло автоматически выпускать выхлопные газы и впускать новый заряд смеси.

Отличительной особенностью двигателя Барнетта было то, что свежая смесь сжималась поршнем перед воспламенением.

Чертёж одного из двигателей Барнетта:

В 1853-57 годах , итальянские изобретатели Еугенио Барзанти и Феличе Маттеуччи разработали и запатентовали двухцилиндровый двигатель внутреннего сгорания мощность 5 л/с.
Патент был выдан Лондонским бюро так как итальянское законодательство не могло гарантировать достаточную защиту.

Строительство прототипа было поручено компании «Bauer & Co. of Milan» (Helvetica) , и завершено в начале 1863 года. Успех двигателя, который был гораздо более эффективным чем паровая машина, оказался настолько велик, что компания стала получать заказы со всего света.

Ранний, одноцилиндровый двигатель Барзанти-Маттеуччи:

Модель двухцилиндрового двигателя Барзанти-Маттеуччи:

Маттеуччи и Барзанти заключили соглашение на производство двигателя с одной из бельгийских компаний. Барзанти отбыл в Бельгию для наблюдения за работой лично и внезапно умер от тифа. Со смертью Барзанти все работы по двигателю были прекращены, а Маттеуччи вернулся к своей прежней работе в качестве инженера-гидравлика.

В 1877 году, Маттеуччи утверждал, что он с Барзанти были главными создателями двигателя внутреннего сгорания, а двигатель построенный Августом Отто очень походил на двигатель Барзанти-Маттеуччи.

Документы касающиеся патентов Барзанти и Маттеуччи хранятся в архиве библиотеки Museo Galileo во Флоренции.

Самым главным изобретением Николауса Отто был двигатель с четырёхтактным циклом - циклом Отто . Этот цикл по сей день лежит в основе работы большинства газовых и бензиновых двигателей.

Четырёхтактный цикл был самым большим техническим достижением Отто, но вскоре обнаружилось, что за несколько лет до его изобретения точно такой же принцип работы двигателя был описан французским инженером Бо де Роша (см. выше) . Группа французских промышленников оспорила патент Отто в суде, суд счёл их доводы убедительными. Права Отто, вытекавшие из его патента, были значительно сокращены, в том числе было аннулировано его монопольное право на четырёхтактный цикл.

Не смотря на то, что конкуренты наладили выпуск четырёхтактных двигателей, отработанная многолетним опытом модель Отто всё равно была лучшей, и спрос на неё не прекращался. К 1897 году было выпущено около 42 тысяч таких двигателей разной мощности. Однако то обстоятельство, что в качестве топлива использовался светильный газ, сильно суживало область их применения.
Количество светильногазовых заводов было незначительно даже в Европе, а в России их вообще было только два - в Москве и Петербурге.

В 1865 году , французкий изобретатель Пьер Хьюго получил патент на машину представлявшую собой вертикальный одноцилиндровый двигатель двойного действия, в котором для подачи смеси использовались два резиновых насоса, приводимых в действие от коленчатого вала.

Позже Хьюго сконструировал горизонтальный двигатель схожий с двигателем Ленуара.

Science Museum, London.

В 1870 году , австро-венгерский изобретатель Сэмюэль Маркус Зигфрид сконструировал двигатель внутреннего сгорания работающий на жидком топливе и установил его на четырёхколёсную тележку.

Сегодня этот автомобиль хорошо известен как «The first Marcus Car».

В 1887 году, в сотрудничестве с компанией «Bromovsky & Schulz», Маркус построил второй автомобиль - «Second Marcus Car».

В 1872 году , американский изобретатель запатентовал двухцилиндровый двигатель внутреннего сгорания постоянного давления, работающий на керосине.
Брайтон назвал свой двигатель «Ready Motor».

Первый цилиндр выполнял функцию компрессора, нагнетавшего воздух в камеру сгорания, в которую непрерывно поступал и керосин. В камере сгорания смесь поджигалась и через золотниковый механизм поступало во второй - рабочий цилиндр. Существенным отличием от других двигателей, было то, что топливовоздушная смесь сгорала постепенно и при постоянном давлении.

Интересующиеся термодинамическими аспектами двигателя, могут почитать про «Цикл Брайтона» .

В 1878 году , шотландский инженер Сэр (в 1917 году посвящён в рыцари) разработал первый двухтактный двигатель с воспламенением сжатой смеси. Он запатентовал его в Англии в 1881 году.

Двигатель работал любопытным образом: в правый цилиндр подавался воздух и топливо, там оно смешивалось и эта смесь выталкивалась в левый цилиндр, где и происходило поджигание смеси от свечи. Происходило расширение, оба поршня опускались, из левого цилиндра (через левый патрубок) выбрасывались выхлопные газы, а в правый цилиндр всасывалась новая порция воздуха и топлива. Следуя по инерции поршни поднимались и цикл повторялся.

В 1879 году , построил вполне надежный бензиновый двухтактный двигатель и получил на него патент.

Однако настоящий гений Бенца проявился в том, что в последующих проектах он сумел совместить различные устройства (дроссель, зажигание с помощью искры с батареи, свеча зажигания, карбюратор, сцепление, КПП и радиатор) на своих изделиях, что в свою очередь стало стандартом для всего машиностроения.

В 1883 году, Бенц основал компанию «Benz & Cie» по производству газовых двигателей и в 1886 году запатентовал четырехтактный двигатель, который он использован на своих автомобилях.

Благодаря успеху компании «Benz & Cie», Бенц смог заняться проектированием безлошадных экипажей. Совместив опыт изготовления двигателей и давнишнее хобби - конструирование велосипедов, к 1886-му году он построил свой первый автомобиль и назвал его "Benz Patent Motorwagen ".


Конструкция сильно напоминает трехколёсный велосипед.

Одноцилиндровый четырёхтактный двигатель внутреннего сгорания рабочим объёмом 954 см3., установленный на "Benz Patent Motorwagen ".

Двигатель был оснащён большим маховиком (использовался не только для равномерного вращения, но и для запуска) , бензобаком на 4,5 л., карбюратором испарительного типа и золотниковым клапаном, через который топливо поступало в камеру сгорания. Воспламенение производилось свечой зажигания собственной конструкции Бенца, напряжение на которую подавалось от катушки Румкорфа .

Охлаждение было водяным, но не замкнутого цикла, а испарительным. Пар уходил в атмосферу, так что заправлять автомобиль приходилось не только бензином, но и водой.

Двигатель развивал мощность 0,9 л.с. при 400 об/мин и разгонял автомобиль до 16 км/ч.

Карл Бенц за «рулём» своего авто.

Чуть позже, в 1896 году, Карл Бенц изобрел оппозитный двигатель (или плоский двигатель) , в котором поршни достигают верхней мертвой точки в одно и то же время, тем самым уравновешивая друг друга.

Музей «Mercedes-Benz» в Штутгарте.

В 1882 году , английский инженер Джеймс Аткинсон придумал цикл Аткинсона и двигатель Аткинсона.

Двигатель Аткинсона - это по существу двигатель, работающий по четырёхтактному циклу Отто , но с измененным кривошипно-шатунным механизмом. Отличие заключалось в том, что в двигателе Аткинсона все четыре такта происходили за один оборот коленчатого вала.

Использование цикла Аткинсона в двигателе позволяло уменьшить потребление топлива и снизить уровень шума при работе за счёт меньшего давления при выпуске. Кроме того, в этом двигателе не требовалось редуктора для привода газораспределительного механизма, так как открытие клапанов приводил в движение коленчатый вал.

Не смотря на ряд преимуществ (включая обход патентов Отто) двигатель не получил широкого распространения из-за сложности изготовления и некоторых других недостатков.
Цикл Аткинсона позволяет получить лучшие экологические показатели и экономичность, но требует высоких оборотов. На малых оборотах выдаёт сравнительно малый момент и может заглохнуть.

Сейчас двигатель Аткинсона применяется на гибридных автомобилях «Toyota Prius» и «Lexus HS 250h».

В 1884 году , британский инженер Эдвард Батлер , на лондонской выставке велосипедов "Stanley Cycle Show " продемонстрировал чертежи трёхколёсного автомобиля с бензиновым двигателем внутреннего сгорания , а в 1885 году построил его и показал на той же выставке, назвав «Velocycle». Так же, Батлер был первым кто использовал слово бензин .

Патент на «Velocycle» был выдан в 1887 году.

На «Velocycle» был установлен одноцилиндровый, четырёхтактный бензиновый ДВС оснащенный катушкой зажигания, карбюратором, дросселем и жидкостным охлаждением. Двигатель развивал мощность около 5 л.с. при объёме 600 см3, и разгонял автомобиль до 16 км/ч.

На протяжении многих лет Батлер улучшал характеристики своего транспортного средства, но был лишен возможности его тестировать из-за "Закона Красного Флага " (издан в 1865 году) , согласно которому транспортные средства не должны были превышать скорость свыше 3 км/ч. Кроме того, в автомобиле должны были присутствовать три человека, один из которых должен был идти перед автомобилем с красным флагом (такие вот меры безопасности) .

В журнале «Английский Механик» от 1890 года, Батлер написал - «Власти запрещают использование автомобиля на дорогах, в следствии чего я отказываюсь от дальнейшего развития.»

Из-за отсутствия общественного интереса к автомобилю, Батлер разобрал его на металлолом, и продал патентные права Гарри Дж. Лоусону (производителю велосипедов) , который продолжил производство двигателя для использования на катерах.

Сам же Батлер перешёл к созданию стационарных и судовых двигателей.

В 1891 году , Герберт Эйкройд Стюарт в сотрудничестве с компанией "Richard Hornsby and Sons " построил двигатель «Hornsby-Akroyd», в котором топливо (керосин) под давлением впрыскивалось в дополнительную камеру (из-за формы её называли «горячий шарик») , установленную на головке блока цилиндров и соединённую с камерой сгорания узким проходом. Топливо воспламенялось от горячих стенок дополнительной камеры и устремлялось в камеру сгорания.


1. Дополнительная камера (горячий шарик) .
2. Цилиндр.
3. Поршень.
4. Картер.

Для запуска двигателя использовалась паяльная лампа, которой нагревали дополнительную камеру (после запуска она подогревалась выхлопными газами) . Из-за этого двигатель «Hornsby-Akroyd», который был предшественником дизельного двигателя сконструированного Рудольфом Дизелем , часто называли «полу-дизелем». Однако спустя год Эйкройд усовершенствовал свой двигатель добавив к нему «водяную рубашку» (патент от 1892 г.), что позволило повысить температуру в камере сгорания за счёт увеличения степени сжатия, и теперь уже не было необходимости в дополнительном источнике нагрева.

В 1893 году , Рудольф Дизель получил патенты на тепловой двигатель и модифицированный "цикл Карно " под названием «Метод и аппарат для преобразования высокой температуры в работу».

В 1897 году, на «Аугсбургском машиностроительном заводе» (с 1904 года MAN) , при финансовом участии компаний Фридриха Круппа и братьев Зульцер, был создан первый функционирующий дизель Рудольфа Дизеля
Мощность двигателя составляла 20 лошадиных сил при 172 оборотах в минуту, КПД 26,2 % при весе пять тонн.
Это намного превосходило существующие двигатели Отто с КПД 20 % и судовые паровые турбины с КПД 12 %, что вызвало живейший интерес промышленности в разных странах.

Двигатель Дизеля был четырёхтактным. Изобретатель установил, что КПД двигателя внутреннего сгорания повышается от увеличения степени сжатия горючей смеси. Но сильно сжимать горючую смесь нельзя, потому что тогда повышаются давление и температура и она самовоспламеняется раньше времени. Поэтому Дизель решил сжимать не горючую смесь, а чистый воздух и концу сжатия впрыскивать топливо в цилиндр под сильным давлением.
Так как температура сжатого воздуха достигала 600-650 °C, топливо самовоспламенялось, и газы, расширяясь, двигали поршень. Таким образом Дизелю удалось значительно повысить КПД двигателя, избавиться от системы зажигания, а вместо карбюратора использовать топливный насос высокого давления
В 1933 году Эллинг пророчески писал: «Когда я начал работать над газовой турбиной в 1882 году, я был твёрдо уверен в том, что моё изобретение будет востребовано в авиастроении.»

К сожалению, Эллинг умер в 1949 году, так и не дожив до наступления эры турбореактивной авиации.

Единственное фото, которое удалось найти.

Возможно кто-то найдёт что-либо об этом человеке в "Норвежском музее техники ".

В 1903 году , Константин Эдуардович Циолковский , в журнале «Научное обозрение» опубликовал статью «Исследование мировых пространств реактивными приборами », где впервые доказал, что аппаратом, способным совершить космический полёт, является ракета. В статье был предложен и первый проект ракеты дальнего действия. Корпус её представлял собой продолговатую металлическую камеру, снабжённую жидкостным реактивным двигателем (который тоже является двигателем внутреннего сгорания) . В качестве горючего и окислителя он предлагал использовать соответственно жидкие водород и кислород.

Наверное на этой ракетно-космической ноте и стоит закончить историческую часть, так как наступил 20-ый век и Двигатели Внутреннего Сгорания стали производиться повсеместно.

Философское послесловие…

К.Э. Циолковский полагал, что в обозримом будущем люди научатся жить если не вечно, то по крайней мере очень долго. В связи с этим на Земле будет мало места (ресурсов) и потребуются корабли для переселения на другие планеты. К сожалению, что-то в этом мире пошло не так, и с помощью первых ракет люди решили просто уничтожать себе подобных...

Спасибо всем кто прочитал.

Все права защищены © 2016
Любое использование материалов допускается только с указанием активной ссылки на источник.

с одержание

Введение…………………………………………………………………….2

1. История создания……………………………………………….…..3

2. История автомобилестроения в России…………………………7

3. Поршневые двигатели внутреннего сгорания……………………8

3.1 Классификация ДВС ………………………………………….8

3.2 Основы устройства поршневых ДВС ………………………9

3.3 Принцип работы……………………………………………..10

3.4 Принцип действия четырехтактного карбюраторного двигателя………………………………………………………………10

3.5 Принцип действия четырехтактного дизеля……………11

3.6 Принцип действия двухтактного двигателя…………….12

3.7 Рабочий цикл четырехтактных карбюраторных и дизельных двигателей………………………………………….…………….13

3.8 Рабочий цикл четырехтактного двигателя………...……14

3.9 Рабочие циклы двухтактных двигателей………………...15

Заключение………………………………………………………………..16

Введение.

XX век - это мир техники. Могучие машины добывают из недр земли миллионы тонн угля, руды, нефти. Мощные электростанции вырабатывают миллиарды киловатт-часов электроэнергии. Тысячи фабрик и заводов изготавливают одежду, радиоприемники, телевизоры, велосипеды, автомобили, часы и другую необходимую продукцию. Телеграф, телефон и радио соединяет нас со всем миром. Поезда, теплоходы, самолеты с большой скоростью переносят нас через материки и океаны. А высоко над нами, за пределами земной атмосферы, летают ракеты и искусственные Спутники Земли. Все это действует не без помощи электричества.

Человек начал свое развитие с присвоения готовых продуктов природы. Уже на первом этапе развития он стал применять искусственные орудия труда.

С развитием производства начинают складываться условия для возникновения и развития машин. Сначала машины, как и орудия труда лишь помогали человеку в его труде. Затем они стали постепенно заменять его.

В феодальный период истории впервые в качестве источника энергии была использована сила водяного потока. Движение воды вращало водяное колесо, которое в свою очередь приводило в действие различные механизмы. В этот период появилось множество разнообразных технологических машин. Однако широкое распространение этих машин часто тормозилось из-за отсутствия рядом водяного потока. Нужно было искать новые источники энергии, чтобы приводить в действие машины в любой точке земной поверхности. Пробовали энергию ветра, но это оказалось малоэффективным.

Стали искать другой источник энергии. Долго трудились изобретатели, много машин испытали - и вот, наконец, новый двигатель был построен. Это был паровой двигатель. Он приводил в движение многочисленные машины и станки на фабриках и заводах.В начале XIX века были изобретены первые сухопутные паровые транспортные средства -паровозы.

Но паровые машины были сложными, громоздкими и дорогими установками. Бурно развивающемуся механическому транспорту нужен был другой двигатель - небольшой и дешевый. В 1860 г. француз Ленуар, использовав конструктивные элементы паровой машины, газовое топливо и электрическую искру для зажигания, сконструировал первый нашедший практическое применение двигатель внутреннего сгорания.

1. ИСТОРИЯ СОЗДАНИЯ

Использовать внутреннюю энергию – это значит совершить за счет нее полезную работу, то есть превращать внутреннюю энергию в механическую. В простейшем опыте, который заключается в том, что в пробирку наливают немного воды и доводят ее до кипения (причем пробирка изначально закрыта пробкой), пробка под давлением образовавшегося пара поднимается вверх и выскакивает.

Другими словами, энергия топлива переходит во внутреннюю энергию пара, а пар, расширяясь, совершает работу, выбивая пробку. Так внутренняя энергия пара превращается в кинетическую энергию пробки.

Если пробирку заменить прочным металлическим цилиндром, а пробку поршнем, который плотно прилегает к стенкам цилиндра и способен свободно перемещаться вдоль них, то получится простейший тепловой двигатель.

Тепловыми двигателями называют машины, в которых внутренняя энергия топлива превращается в механическую энергию.

История тепловых машин уходит в далекое прошлое говорят, еще две с лишним тысячи лет назад, в III веке до нашей эры, великий греческий механик и математик Архимед построил пушку, которая стреляла с помощью пара. Рисунок пушки Архимеда и ее описание были найдены спустя 18 столетий в рукописях великого итальянского ученого, инженера и художника Леонардо да Винчи.

Как же стреляла эта пушка? Один конец ствола сильно нагревали на огне. Затем в нагретую часть ствола наливали воду. Вода мгновенно испарялась и превращалась в пар. Пар, расширяясь, с силой и грохотом выбрасывал ядро. Для нас интересно здесь то, что ствол пушки представлял собой цилиндр, по которому как поршень скользило ядро.

Примерно тремя столетиями позже в Александрии - культурном и богатом городе на африканском побережье Средиземного моря - жил и работал выдающийся ученый Герон, которого историки называют Героном Александрийским. Герон оставил несколько сочинений, дошедших до нас, в которых он описал различные машины, приборы, механизмы, известные в те времена.

В сочинениях Герона есть описание интересного прибора, который сейчас называют Героновым шаром. Он представляет собой полый железный шар, закрепленный так, что может вращаться вокруг горизонтальной оси. Из закрытого котла с кипящей водой пар по трубке поступает в шар, из шара он вырывается наружу через изогнутые трубки, при этом шар приходит во вращение. Внутренняя энергия пара превращается в механическую энергию вращения шара. Геронов шар - это прообраз современных реактивных двигателей.

В то время изобретение Герона не нашло применения и осталось только забавой. Прошло 15 столетий. Во времена нового расцвета науки и техники, наступившего после периода средневековья, об использовании внутренней энергии пара задумывается Леонардо да Винчи. В его рукописях есть несколько рисунков с изображением цилиндра и поршня. Под поршнем в цилиндре находится вода, а сам цилиндр подогревается. Леонардо да Винчи предполагал, что образовавшийся в результате нагрева воды пар, расширяясь и увеличиваясь в объеме, будет искать выход и толкать поршень вверх. Во время своего движения вверх поршень мог бы совершать полезную работу.

Несколько иначе представлял себе двигатель, использующий энергию пара, Джованни Бранка, живший на век ршсе великого Леонардо. Это было колесо с
лопатками, в второе с силой ударяла струя пара, благодаря чему колесо начинало вращаться. По существу, это была первая паровая турбина.

В XVII-XVIII веках над изобретением паровой машитрудились англичане Томас Севери (1650-1715) и Томас Ньюкомен (1663-1729), француз Дени Папен (1647-1714), русский ученый Иван Иванович Ползунов (1728-1766) и Дрогие другие.

Папен построил цилиндр, в котором вверх и вниз свободно перемещался поршень. Поршень был связан тросом, перекинутым через блок, с грузом, который вслед за поршнем также поднимался и опускался. По мысли Папена, поршень можно было связать с какой-либо машиной, Например водяным насосом, который стал бы качать воду. В нижнюю откидывающуюся часть цилиндра насыпали поpox, который затем поджигали. Образовавшиеся газы, стремясь расшириться, толкали поршень вверх. После отого цилиндр и поршень с наружной стороны обливали диодной водой. Газы в цилиндре охлаждались, и их давление на поршень уменьшалось. Поршень под действием собственного веса и наружного атмосферного давления опусускался вниз, поднимая при этом груз. Двигатель совершал полезную работу. Для практических целей он негодился: слишком уж сложен был технологический цикл его работы (засыпка и поджигание пороха, обливание водой, И это на протяжении всей работы двигателя!). Кроме того, применение подобного двигателя было далеко не безопасным.

Однако нельзя не усмотреть в первой машине Палена черты современного двигателя внутреннего сгорания.

В своем новом двигателе Папен вместо пороха использовал воду. Ее наливали в цилиндр под поршень, а сам цилиндр разогревали снизу. Образующийся пар поднимал поршень. Затем цилиндр охлаждали, и находящийся в нем пар конденсировался – снова превращался в воду. Поршень, как и в случае порохового двигателя, под действием своего веса и атмосферного давления опускался вниз. Этот двигатель работал лучше, чем пороховой, но для серьезного практического использования был также малопригоден: нужно было подводить и отводить огонь, подавать охлажденную воду, ждать, пока пар сконденсируется, перекрывать воду и т.п.

Все эти недостатки были связаны с тем, что приготовление пара, необходимого для работы двигателя, происходило в самом цилиндре. А что если в цилиндр впускать уже готовый пар, полученный, например, в отдельном котле? Тогда достаточно было бы попеременно впускать в цилиндр то пар, то охлажденную воду, и двигатель работал бы с большей скоростью и меньшим потреблением топлива.

Об этом догадался современник Дени Палена англичанин Томас Севери, построивший паровой насос для откачки воды из шахты. В его машине приготовление пара происходило вне цилиндра - в котле.

Вслед за Севери паровую машину (также приспособленную для откачивания воды из шахты) сконструировал английский кузнец Томас Ньюкомен. Он умело использовал многое из того, что было придумано до него. Ньюкомен взял цилиндр с поршнем Папена, но пар для подъема поршня получал, как и Севери, в отдельном котле.

Машина Ньюкомена, как и все ее предшественницы, работала прерывисто - между двумя рабочими ходами поршня была пауза. Высотой она была с четырех-пятиэтажный дом и, следовательно, исключительно <прожорлива>: пятьдесят лошадей еле-еле успевали подвозить ей топливо. Обслуживающий персонал состоял из двух человек: кочегар непрерывно подбрасывал уголь в <ненасытную пасть> топки, а механик управлял кранами, впускающими пар и холодную воду в цилиндр.

Понадобилось еще 50 лет, прежде чем был построен универсальный паровой двигатель. Это произошло в России, на одной из отдаленных ее окраин - Алтае, где в то время работал гениальный русский изобретатель, солдатский сын Иван Ползунов.

Ползунов построил свою <огнедействующую машину> на одном из барнаульских заводов. Это изобретение было делом его жизни и, можно сказать, стоило ему жизни, В апреле 1763 года Ползунов заканчивает расчеты и подает проект на рассмотрение. В отличие от паровых насосов Севери и Ньюкомена, о которых Ползунов знал и недостатки которых ясно осознавал, это был проект универсальной машины непрерывного действия. Машина предназначалась для воздуходувных мехов, нагнетающих воздух в плавильные печи. Главной ее особенностью было то, что рабочий вал качался непрерывно, без холостых пауз. Это достигалось тем, что Ползунов предусмотрел вместо одного Цилиндра, как это было в машине Ньюкомена, два попеременно работающих. Пока в одном цилиндре поршень под действием пара поднимался вверх, в другом пар конденсировался, и поршень шел вниз. Оба поршня были связаны одним рабочим валом, который они поочередно поворачивали то в одну, то в другую стороны. Рабочий ход машины осуществлялся не за счет атмосферного давления, как у Ньюкомена, а благодаря работе пара в цилиндрах.

Весной 1766-года ученики Ползунова, спустя неделю после его смерти (он умер в 38 лет), испытали машину. Она работала в течение 43 суток и приводила в движение мехи трех плавильных печей. Потом котел дал течь; кожа, которой были обтянуты поршни (чтобы уменьшить зазор между стеннкой цилиндра и поршнем), истерлась, и машина остановилась навсегда. Больше ею никто не занимался.

Создателем другого универсального парового двигателя, который получил широкое распространение, стал английский механик Джеймс Уатт (1736-1819). Работая над усовершенствованием машины Ньюкомена, он в 1784 году построил двигатель, который годился для любых нужд. Изобретение Уатта было принято на ура. В наиболее развитых странах Европы ручной труд на фабриках и заводах все больше и больше заменялся работой машин. Универсальный двигатель стал необходим производству, и он был создан.

В двигателе Уатта применен так называемый кривошипно-шатунный механизм, преобразовывающий возвратно-поступательное движение поршня во
вращательное движение колеса.

Уже потом было придумано <двойное действие> машины: направляя поочередно пар то под поршень, то сверху поршня, Уатт превратил оба его хода (вверх и вниз) в рабочие. Машина стала мощнее. Пар в верхнюю и нижнюю части цилиндра направлялся специальным парораспределительным механизмом, который впоследствии был усовершенствован и назван <золотником>.

Затем Уатт пришел к выводу, что вовсе не обязательно все время, пока поршень движется, подавать в цилиндр пар. Достаточно впустить в цилиндр какую-то порцию пара и сообщить поршню движение, а дальше этот пар начнет расширяться и перемещать поршень в крайнее положение. Это сделало машину экономичней: меньше требовалось пара, меньше расходовалось топлива.

Сегодня один из самых распространенных тепловых двигателей - двигатель внутреннего сгорания (ДВС). Его устанавливают на автомобили, корабли, тракторы, моторные лодки и т.д., во всем мире насчитываются сотни миллионов таких двигателей.

Для оценки теплового двигателя важно знать, какую часть энергии, выделяемую топливом, он превращает в полезную работу. Чем больше эта часть энергии, тем двигатель экономичнее.

Для характеристики экономичности вводится понятие коэффициента полезного действия (КПД).

КПД теплового двигателя - это отношение той части энергии, которая пошла на совершение полезной работы двигателя, ко всей энергии, выделившейся при сгорании топлива.

Первый дизель (1897 г.) имел КПД 22%. Паровая машина Уатта (1768 г.) - 3-4%, современный стационарный дизель имеет КПД 34-44%.

2. ИСТОРИЯ АВТОМОБИЛЕСТРОЕНИЯ В РОСИИ

Автомобильный транспорт в России обслуживает все отрасли народного хозяйства и занимает одно из ведущих мест в единой транспортной системе страны. На долю автомобильного транспорта приходится свыше 80% грузов, перевозимых всеми видами транспорта вместе взятыми, и более 70% пассажирских перевозок.

Автомобильный транспорт создан в результате развития новой отрасли народного хозяйства - автомобильной промышленности, которая на современном этапе является одним из основных звеньев отечественного машиностроения.

Начало создания автомобиля было положено более двухсот лет назад (название "автомобиль" происходит от греческого слова autos - "сам" и латинского mobilis - "подвижный"), когда стали изготовлять "самодвижущиеся" повозки. Впервые они появились в России. В 1752 г. русский механик-самоучка крестьянин Л.Шамшуренков создал довольно совершенную для своего времени "самобеглую коляску", приводимого в движение силой двух человек. Позднее русский изобретатель И.П.Кулибин создал "самокатную тележку" с педальным приводом. С появлением паровой машины создание самодвижущихся повозок быстро продвинулось вперед. В 1869-1870 гг. Ж.Кюньо во Франции, а через несколько лет и в Англии были построены паровые автомобили. Широкое распространение автомобиля как транспортного средства начинается с появлением быстроходного двигателя внутреннего сгорания. В 1885 г. Г.Даймлер (Германия) построил мотоцикл с бензиновым двигателем, а в 1886 г. К.Бенц - трехколесную повозку. Примерно в это же время в индустриально развитых странах (Франция, Великобритания, США) создаются автомобили с двигателями внутреннего сгорания.

В конце XIX века в ряде стран возникла автомобильная промышленность. В царской России неоднократно делались попытки организовать собственное машиностроение. В 1908 г. производство автомобилей было организовано на Русско-Балтийском вагоностроительном заводе в Риге. В течение шести лет здесь выпускались автомобили, собранные в основном из импортных частей. Всего завод построил 451 легковой автомобиль и небольшое количество грузовых автомобилей. В 1913 г. автомобильный парк в России составлял около 9000 автомобилей, из них большая часть - зарубежного производства.

После Великой Октябрьской социалистической революции практически заново пришлось создавать отечественную автомобильную промышленность. Начало развития российского автомобилестроения относится к 1924 году, когда в Москве на заводе АМО были построены первые грузовые автомобили АМО-Ф-15.

В период 1931-1941 гг. создается крупносерийное и массовое производство автомобилей. В 1931 г. на заводе АМО началось массовое производство грузовых автомобилей. В 1932 г. вошел в строй завод ГАЗ.

В 1940 г. начал производство малолитражных автомобилей Московский завод малолитражных автомобилей. Несколько позже был создан Уральский автомобильный завод. За годы послевоенных пятилеток вступили в строй Кутаисский, Кременчугский, Ульяновский, Минский автомобильные заводы. Начиная с конца 60-х гг., развитие автомобилестроения характеризуется особо быстрыми темпами. В 1971 г. вступил в строй Волжский автомобильный завод им. 50-летия СССР.


Как было выше сказано, тепловое расширение применяется в ДВС. Но каким образом оно применяется и какую функцию выполняет мы рассмотрим на примере работы поршневого ДВС. Двигателем называется энергосиловая машина, преобразующая какую-либо энергию в механическую работу. Двигатели, в которых механическая работа создается в результате преобразования тепловой энергии, называются тепловыми. Тепловая энергия получается при сжигании какого-либо топлива. Тепловой двигатель, в котором часть химической энергии топлива, сгорающего в рабочей полости, преобразуется в механическую энергию, называется поршневым двигателем внутреннего сгорания. (Советский энциклопедический словарь)

Как было выше сказано, в качестве энергетических установок автомобилей наибольшее распространение поучили ДВС, в которых процесс сгорания топлива с выделением теплоты и превращением ее в механическую работу происходит непосредственно в цилиндрах. Но в большинстве современных автомобилей установлены двигатели внутреннего сгорания, которые классифицируются по различным признакам: По способу смесеобразования - двигатели с внешним смесеобразованием, у которых горючая смесь приготовляется вне цилиндров (карбюраторные и газовые), и двигатели с внутренним смесеобразованием (рабочая смесь образуется внутри цилиндров) -дизели; По способу осуществления рабочего цикла - четырехтактные и двухтактные; По числу цилиндров - одноцилиндровые, двухцилиндровые и многоцилиндровые; По расположению цилиндров - двигатели с вертикальным или наклонным расположением цилиндров в один ряд, V-образные с расположением цилиндров под углом (при расположении цилиндров под углом 180 двигатель называется двигателем с противолежащими цилиндрами, или оппозитным); По способу охлаждения - на двигатели с жидкостным или воздушным охлаждением; По виду применяемого топлива - бензиновые, дизельные, газовые и многотопливные;По степени сжатия. В зависимости от степени сжатия различают

двигатели высокого (E=12...18) и низкого (E=4...9) сжатия; По способу наполнения цилиндра свежим зарядом:а) двигатели без наддува, у которых впуск воздуха или горючей смеси осуществляется за счет разряжения в цилиндре при всасывающем ходе поршня;) двигатели с наддувом, у которых впуск воздуха или горючей смеси в рабочий цилиндр происходит под давлением, создаваемым компрессором, с целью увеличения заряда и получения повышенной мощности двигателя; По частоте вращения: тихоходные, повышенной частоты вращения, быстроходные;По назначению различают двигатели стационарные, авто тракторные, судовые, тепловозные, авиационные и др.

Поршневые ДВС состоят из механизмов и систем, выполняющих заданные им функции и взаимодействующих между собой. Основными частями такого двигателя являются кривошипно-шатунный механизм и газораспределительный механизм, а также системы питания, охлаждения, зажигания и смазочная система.

Кривошипно-шатунный механизм преобразует прямолинейное возвратно-поступательное движение поршня во вращательное движение коленчатого вала.

Механизм газораспределения обеспечивает своевременный впуск горючей смеси в цилиндр и удаление из него продуктов сгорания.

Система питания предназначена для приготовления и подачи горючей смеси в цилиндр, а также для отвода продуктов сгорания.

Смазочная система служит для подачи масла к взаимодействующим деталям с целью уменьшения силы трения и частичного их охлаждения, наряду с этим циркуляция масла приводит к смыванию нагара и удалению продуктов изнашивания.

Система охлаждения поддерживает нормальный температурный режим работы двигателя, обеспечивая отвод теплоты от сильно нагревающихся при сгорании рабочей смеси деталей цилиндров поршневой группы и клапанного механизма.

Система зажигания предназначена для воспламенения рабочей смеси в цилиндре двигателя.

Итак, четырехтактный поршневой двигатель состоит из цилиндра и картера, который снизу закрыт поддоном. Внутри цилиндра перемещается поршень с компрессионными (уплотнительными) кольцами, имеющий форму стакана с днищем в верхней части. Поршень через поршневой палец и шатун связан с коленчатым валом, который вращается в коренных подшипниках, расположенных в картере. Коленчатый вал состоит из коренных шеек, щек и шатунной шейки. Цилиндр,поршень, шатун и коленчатый вал составляют так называемый кривошипно-шатунный механизм. Сверху цилиндр накрыт головкой с клапанами, открытие и закрытие которых строго согласовано с вращением коленчатого вала, а следовательно, и с перемещением поршня.

Перемещение поршня ограничивается двумя крайними положениями, при которых его скорость равна нулю. Крайнее верхнее положение поршня называется верхней мертвой точкой (ВМТ), крайнее нижнее его положение - нижняя мертвая точка (НМТ) .

Безостановочное движение поршня через мертвые точки обеспечивается маховиком, имеющим форму диска с массивным ободом. Расстояние, проходимое поршнем от ВМТ до НМТ, называется ходом поршня S, который равен удвоенному радиусу R кривошипа: S=2R.

Пространство над днищем поршня при нахождении его в ВМТ называется камерой сгорания; ее объем обозначается через Vс; пространство цилиндра между двумя мертвыми точками (НМТ и ВМТ) называется его рабочим объемом и обозначается Vh. Сумма объема камеры сгорания Vс и рабочего объема Vh составляет полный объем цилиндра Vа: Vа=Vс+Vh. Рабочий объем цилиндра (его измеряют в кубических сантиметрах или метрах): Vh=пД^3*S/4, где Д - диаметр цилиндра. Сумму всех рабочих объемов цилиндров многоцилиндрового двигателя называют рабочим объемом двигателя, его определяют по формуле: Vр=(пД^2*S)/4*i, где i - число цилиндров. Отношение полного объема цилиндра Va к объему камеры сгорания Vc называется степенью сжатия: E=(Vc+Vh)Vc=Va/Vc=Vh/Vc+1. Степень сжатия является важным параметром двигателей внутреннего сгорания, т.к. сильно влияет на его экономичность и мощность.

Действие поршневого двигателя внутреннего сгорания основано на использовании работы теплового расширения нагретых газов во время движения поршня от ВМТ к НМТ. Нагревание газов в положении ВМТ достигается в результате сгорания в цилиндре топлива, перемешанного с воздухом. При этом повышается температура газов и давления. Т. к.давление под поршнем равно атмосферному, а в цилиндре оно намного больше, то под действием разницы давлений поршень будет перемещаться вниз, при этом газы - расширяться, совершая полезную работу. Вот здесь-то и дает о себе знать тепловое расширение газов, здесь и заключается его технологическая функция: давление на поршень. Чтобы двигатель постоянно вырабатывал механическую энергию, цилиндр необходимо периодически заполнять новыми порциями воздуха через впускной клапан и топливо через форсунку или подавать через впускной клапан смесь воздуха с топливом. Продукты сгорания топлива после их расширения удаляются из цилиндра через впускной клапан. Эти задачи выполняют механизм газораспределения, управляющий открытием и закрытием клапанов, и система подачи топлива.

Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным.

Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.

В карбюраторном четырехтактном одноцилиндровом двигателе рабочий цикл происходит следующим образом:

1. Такт впуска По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение 0.07 - 0.095 МПа, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.

2. Такт сжатия. После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.

3. Такт расширения или рабочий ход. В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ.В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал. При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 -0.75 МПа, а температура до 950 - 1200 С. 4. Такт выпуска. При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.

В четырехтактном двигателе рабочие процессы происходят следующим образом:

1. Такт впуска. При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздухоочистителя в полость цилиндра через открытый впускной клапан поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0.08 - 0.095 МПа, а температура 40 - 60 С.

2. Такт сжатия. Поршень движется от НМТ к ВМТ; впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.

3. Такт расширения, или рабочий ход. Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное

давление газов достигает 6 - 9 МПа, а температура 1800 - 2000 С. Под действием давления газов поршень 2 перемещается от ВМТ в НМТ -происходит рабочий ход. Около НМТ давление снижается до 0.3 - 0.5 МПа, а температура до 700 - 900 С.

4. Такт выпуска. Поршень перемещается от НМТ в ВМТ и через открытый выпускной клапан 6 отработавшие газы выталкиваются из цилиндра. Давление газов снижается до 0.11 - 0.12 МПа, а температура до 500-700 С. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности. Для обобщения на показаны схемы рабочего цикла карбюраторных двигателей и дизелей.

Двухтактные двигатели отличаются от четырехтактных тем, что у них наполнение цилиндров горючей смесью или воздухом осуществляется в начале хода сжатия, а очистка цилиндров от отработавших газов в конце хода расширения, т.е. процессы выпуска и впуска происходят без самостоятельных ходов поршня. Общий процесс для всех типов двухтактных

двигателей - продувка, т.е. процесс удаления отработавших газов из цилиндра с помощью потока горючей смеси или воздуха. Поэтому двигатель данного вида имеет компрессор (продувочный насос). Рассмотрим работу двухтактного карбюраторного двигателя с кривошипно-камерной продувкой. У этого типа двигателей отсутствуют клапаны, их роль выполняет поршень, который при своем перемещении закрывает впускные, выпускные и продувочные окна. Через эти окна цилиндр в определенны моменты сообщается с впускным и выпускным трубопроводами и кривошипной камерой (картер), которая не имеет непосредственного сообщения с атмосферой. Цилиндр в средней части имеет три окна: впускное, выпускное 6 и продувочное, которое сообщается клапаном скривошипной камерой двигателя.

Рабочий цикл в двигателе осуществляется за два такта:

1. Такт сжатия. Поршень перемещается от НМТ к ВМТ, перекрывая сначала продувочное, а затем выпускное 6 окно. После закрытия поршнем выпускного окна в цилиндре начинается сжатие ранее поступившей в него горючей смеси. Одновременно в кривошипной камере вследствие ее герметичности создается разряжение, под действием которого из карбюратора через открытое впускное окно поступает горючая смесь в кривошипную камеру.

2. Такт рабочего хода. При положении поршня около ВМТ сжатая рабочая смесь воспламеняется электрической искрой от свечи, в результате чего температура и давление газов резко возрастают. Под действием теплового расширения газов поршень перемещается к НМТ, при этом расширяющиеся газы совершают полезную работу. Одновременно опускающийся поршень закрывает впускное окно и сжимает находящуюся в кривошипной камере горючую смесь.

Когда поршень дойдет до выпускного окна, оно открывается и начинается выпуск отработавших газов в атмосферу,давление в цилиндре понижается. При дальнейшем перемещении поршень открывает продувочное окно и сжатая в кривошипной камере горючая смесь перетекает по каналу, заполняя цилиндр и осуществляя продувку его от остатков отработавших газов.

Рабочий цикл двухтактного дизельного двигателя отличается от рабочего цикла двухтактного карбюраторного двигателя тем, что у дизеля в цилиндр поступает воздух, а не горючая смесь, и в конце процесса сжатия впрыскивается мелкораспыленное топливо.

Мощность двухтактного двигателя при одинаковых размерах цилиндра и частоте вращения вала теоретически в два раза больше четырехтактного за счет большего числа рабочих циклов. Однако неполное использование хода поршня для расширения, худшее освобождение цилиндра от остаточных газов и затраты части вырабатываемой мощности на привод продувочного компрессора приводят практически к увеличению мощности только на 60...70%.

Рабочий цикл четырехтактного двигателя состоит из пяти процессов: впуск, сжатие, сгорание, расширение и выпуск, которые совершаются за четыре такта или за два оборота коленчатого вала.

Графическое представление о давлении газов при изменении объема в цилиндре двигателя в процессе осуществления каждого из четырех циклов дает индикаторная диаграмма. Она может быть построена по данным теплового расчета или снята при работе двигателя с помощью специального прибора - индикатора.

Процесс впуска. Впуск горючей смеси осуществляется после выпуска из цилиндров отработавших газов от предыдущего цикла. Впускной клапан открывается с некоторым опережением до ВМТ, чтобы получить к моменту прихода поршня к ВМТ большее проходное сечение у клапана. Впуск горючей смеси осуществляется за два периода. В первый период смесь поступает при перемещении поршня от ВМТ к НМТ вследствие разряжения, создающегося в цилиндре. Во второй период впуск смеси происходит при перемещении поршня от НМТ к ВМТ в течение некоторого времени, соответствующего 40 - 70 поворота коленчатого вала за счет разности давлений, и скоростного напора смеси. Впуск горючей смеси заканчивается закрытием впускного клапана.Горючая смесь, поступившая в цилиндр, смешивается с остаточными газами от предыдущего цикла и образует горючую смесь. Давление смеси в цилиндре в течение процесса впуска составляет 70 - 90 кПа и зависит от гидравлических потерь во впускной системе двигателя. Температура смеси в конце процесса впуска повышается до 340 - 350 К вследствие соприкосновения ее с нагретыми деталями двигателя и смешивания с

остаточными газами, имеющими температуру 900 - 1000 К.

Процесс сжатия. Сжатие рабочей смеси, находящейся в цилиндре двигателя, происходит при закрытых клапанах и перемещении поршня. Процесс сжатия протекает при наличии теплообмена между рабочей смесью и стенками (цилиндра, головки и днища поршня). В начале сжатия температура рабочей смеси ниже температуры стенок, поэтому теплота передается смеси от стенок. По мере дальнейшего сжатия температура смеси повышается и становится выше температуры стенок, поэтому теплота от смеси передается стенкам. Таким образом процесс сжатия осуществляется по политропе, средний показатель которой n=1.33...1.38. Процесс сжатия заканчивается в момент воспламенения рабочей смеси. Давление рабочей смеси в цилиндре в конце сжатия 0.8 - 1.5МПа, а температура 600 - 750 К.

Процесс сгорания. Сгорание рабочей смеси начинается раньше прихода поршня к ВМТ, т.е. когда сжатая смесь воспламеняется от электрической искры. После воспламенения фронт пламени горящей свечи от свечи распространяется по всему объему камеры сгорания со скоростью 40 - 50 м/с. Несмотря на такую высокую скорость сгорания, смесь успевает сгореть за время, пока коленчатый вал повернется на 30 - 35 .При сгорании рабочей смеси выделяется большое количество теплоты на участке, соответствующим 10 - 15 до ВМТ и 15 - 20 после НМТ, вследствие чего давление и температура образующихся в цилиндре газов быстро возрастают. В конце сгорания давление газов достигает 3 - 5 МПа, а температура 2500 - 2800 К.

Процесс расширения. Тепловое расширение газов, находящихся в цилиндре двигателя, происходит после окончания процесса сгорания при перемещении поршня к НМТ. Газы, расширяясь, совершают полезную работу. Процесс теплового расширения протекает при интенсивном теплообмене между газами и стенками (цилиндра, головки и днища поршня). В начале расширения происходит догорание рабочей смеси, вследствие чего образующиеся газы получают теплоту. Газы в течение всего процесса теплового расширения отдают теплоту стенкам. Температура газов в процессе расширения уменьшается, следовательно, изменяется перепад температуры между газами и стенками. Процесс теплового расширения, заканчивающийся в момент открытия выпускного клапана,. Процесс теплового расширения происходит по политре, средний показатель которой n2=1.23...1.31. Давление газов в цилиндре в конце расширения 0.35 -0.5 МПа, а температура 1200 - 1500 К.

Процесс выпуска. Выпуск отработавших газов начинается при открытии выпускного клапана, т.е. за 40 - 60 до прихода поршня в НМТ. Выпуск газов из цилиндра осуществляется за два периода. В первый период выпуск газов происходит при перемещении поршня до НМТ за счет того, что давление газов в цилиндре значительно выше атмосферного. В этот период из цилиндра удаляется около 60% отработавших газов со скоростью 500 - 600 м/с. Во второй период выпуск газов происходит при перемещении поршня от НМТ до закрытие выпускного клапана за счет выталкивающего действия поршня и инерции движущихся газов. Выпуск отработавших газов заканчивается в момент закрытия выпускного клапана, т. е. через 10 – 20 после прихода поршня в ВМТ. Давление газов в цилиндре в процессе выталкивания 0.11 - 0.12 МПа, температура газов в конце процесса выпуска 90 - 1100 К.

Рабочий цикл дизеля существенно отличается от рабочего цикла карбюраторного двигателя способом образования и воспламенения рабочей смеси.

Процесс впуска. Впуск воздуха начинается при открытом впускном

клапане и заканчивается в момент закрытия его. Процесс впуска воздуха происходит также, как и впуск горючей смеси в карбюраторном двигателе.. Давление воздуха в цилиндре в течении процесса впуска составляет 80 - 95 кПа и зависит от гидравлических потерь во впускной системе двигателя. Температура воздуха в конце процесса выпуска повышается до 320 - 350 К за счет соприкосновения его с нагретыми деталями двигателя и смешивания с остаточными газами.

Процесс сжатия. Сжатие воздуха, находящегося в цилиндре, начинается после закрытия впускного клапана и заканчивается в момент впрыска топлива в камеру сгорания Давление воздуха в цилиндре в конце сжатия 3.5 - 6 МПа, а температура 820 - 980 К.

Процесс сгорания. Сгорание топлива начинается с момента начала подачи топлива в цилиндр, т.е. за 15 - 30 до прихода поршня в ВМТ. В этот момент температура сжатого воздуха на 150 - 200 С выше температуры самовоспламенения. топливо, поступившее в мелкораспыленном состоянии в цилиндр, воспламеняется не мгновенно, а с задержкой в течение некоторого времени (0.001 - 0.003 с), называемого периодом задержки воспламенения. В этот период топливо прогревается, перемешивается с воздухом и испаряется, т.е. образуется рабочая смесь. Подготовленное топливо воспламеняется и сгорает. В конце сгорания давление газов достигает 5.5 - 11 МПа, а температура 1800 - 2400 К.

Процесс расширения. Тепловое расширение газов, находящихся в цилиндре, начинается после окончания процесса сгорания и заканчивается в момент закрытия выпускного клапана. В начале расширения происходит догорание топлива. Процесс теплового расширения протекает аналогично процессу теплового расширения газов в карбюраторном двигателе.. Давление газов в цилиндре к конце расширения 0.3 - 0.5 МПа, а температура 1000 - 1300 К.

Процесс выпуска. Выпуск отработавших газов начинается при открытии выпускного клапана и заканчивается в момент закрытия выпускного клапана. Процесс выпуска отработавших газов происходит также, как и процесс выпуска газов в карбюраторном двигателе. Давление газов в цилиндре в процессе выталкивания 0.11 - 0.12 МПа, температура газов в конце процесса выпуска 700 - 900 К.

Рабочий цикл двухтактного двигателя совершается за два такта, или за один оборот коленчатого вала. Рассмотрим рабочий цикл двухтактного карбюраторного двигателя с кривошипно-камерной продувкой,

Процесс сжатия горючей смеси, находящейся в цилиндре, начинается с момента закрытия поршнем окон цилиндра при перемещении поршня от НМТ к ВМТ. Процесс сжатия протекает также, как и в четырехтактном карбюраторном двигателе,

Процесс сгорания происходит аналогично процессу сгорания в четырехтактном карбюраторном двигателе.

Процесс теплового расширения газов, находящихся в цилиндре, начинается после окончания процесса сгорания и заканчивается в момент открытия выпускных окон. Процесс теплового расширения происходит аналогично процессу расширения газов в четырехтактном карбюраторном двигателе.Процесс выпуска отработавших газов начинается при открытии выпускных окон, т.е. за 60 65 до прихода поршня в НМТ, изаканчивается через 60 - 65 после прохода поршнем НМТ, на диаграмме изображается линией 462. По мере открытия выпускного окна давление в цилиндре резко снижается, а за 50 - 55 до прихода поршня в НМТ открываются продувочные окна и горючая смесь, ранее поступившая в кривошипную камеру и сжатая опускающимся поршнем, начинает поступать в цилиндр. Период, в течение которого

происходит одновременно два процесса - впуск горючей смеси и выпуск отработавших газов,- называют продувкой. Во время продувки горючая смесь вытесняет отработавшие газы и частично уносится вместе с ними. При дальнейшем перемещении к ВМТ поршень перекрывает сначала продувочные окна, прекращая доступ горючей смеси в цилиндр из кривошипной камеры, а затем выпускные и начинается в цилиндре процесс сжатия.

Итак, мы видим, что двигатели внутреннего сгорания - очень сложный механизм. И Функция, выполняемая тепловым расширением в двигателях внутреннего сгорания не так проста, как это кажется на первый взгляд. Да и не существовало бы двигателей внутреннего сгорания без использования теплового расширения газов. И в этом мы легко убеждаемся, рассмотрев подробно принцип работы ДВС, их рабочие циклы - вся их работа основана на использовании теплового расширении газов. Но ДВС - это только одно из конкретных применений теплового расширения. И судя по тому, какую пользу приносит тепловое расширение людям через двигатель внутреннего сгорания, можно судить о пользе данного явления в других областях человеческой деятельности.

И пускай проходит эра двигателя внутреннего сгорания, пусть у них есть много недостатков, пусть появляются новые двигатели, не загрязняющие внутреннюю среду и не использующие функцию теплового расширения, но первые еще долго будут приносить пользу людям, и люди через многие сотни лет будут по доброму отзываться о них, ибо они вывели человечество на новый уровень развития, а, пройдя его, человечество поднялось еще выше.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png