Испытания детонационного двигателя

FPI_RUSSIA / Vimeo

Специализированная лаборатория «Детонационные ЖРД» научно-производственного объединения «Энергомаш» провела испытания первых в мире полноразмерных демонстраторов технологий детонационного жидкостного ракетного двигателя. Как сообщает ТАСС, новые силовые установки работают на топливной паре кислород-керосин.

Новый двигатель, в отличие от других силовых установок, работающих по принципу внутреннего сгорания, функционирует за счет детонации топлива. Детонацией называется сверхзвуковое горение какого-либо вещества, в данном случае топливной смеси. При этом по смеси распространяется ударная волна, за которой следует химическая реакция с выделением большого количества тепла.

Изучение принципов работы и разработка детонационных двигателей ведется в некоторых странах мира уже больше 70 лет. Первые такие работы начались еще в Германии в 1940-х годах. Правда тогда работающего прототипа детонационного двигателя исследователям создать не удалось, но были разработаны и серийно выпускались пульсирующие воздушно-реактивные двигатели. Они ставились на ракеты «Фау-1».

В пульсирующих воздушно-реактивных двигателях топливо сгорало с дозвуковой скоростью. Такое горение называется дефлаграцией. Пульсирующим двигатель называется потому, что в его камеру сгорания топливо и окислитель подавались небольшими порциями через равные промежутки времени.


Карта давления в камере сгорания ротационного детонационного двигателя. A - детонационная волна; B - задний фронт ударной волны; C - зона смешения свежих и старых продуктов горения; D - область заполнения топливной смесью; E - область несдетонировавшей сгоревшей топливной смеси; F - зона расширения со сдетонировавшей сгоревшей топливной смесью

Детонационные двигатели сегодня делятся на два основных типа: импульсные и ротационные. Последние еще называют спиновыми. Принцип работы импульсных двигателей схож с таковым у пульсирующих воздушно-реактивных двигателей. Основное отличие заключается в детонационном горении топливной смеси в камере сгорания.

В ротационных детонационных двигателях используется кольцевая камера сгорания, в которой топливная смесь подается последовательно через радиально расположенные клапаны. В таких силовых установках детонация не затухает - детонационная волна «обегает» кольцевую камеру сгорания, топливная смесь за ней успевает обновиться. Ротационный двигатель впервые начали изучать в СССР в 1950-х годах.

Детонационные двигатели способны работать в широком пределе скоростей полета - от нуля до пяти чисел Маха (0-6,2 тысячи километров в час). Считается, что такие силовые установки могут выдавать большую мощность, потребляя топлива меньше, чем обычные реактивные двигатели. При этом конструкция детонационных двигателей относительно проста: в них отсутствует компрессор и многие движущиеся части.

Все детонационные двигатели, испытывавшиеся до сих пор, разрабатывались для экспериментальных самолетов. Испытанная в России такая силовая установка является первой, предназначенной для установки на ракету. Какой именно тип детонационного двигателя прошел испытания, не уточняется.

ООО «Аналог» было организовано в 2010 году для производства и эксплуатации придуманной мной конструкции опрыскивателей для полей, идея которого закреплена Патентом РФ на полезную модель № 67402 в 2007 году.

Теперь, мною же разработана концепция роторного ДВС, в котором возможна организация детонационного (взрывного) сжигания поступающего топлива с повышенным выделением (примерно в 2 раза) энергии давления и температуры отработавших газов с сохранением работоспособности двигателя. Соответственно, с увеличением, примерно в 2 раза, КПД теплового двигателя, т.е. примерно до 70%. Реализация этого проекта требует больших финансовых затрат на его проектирование, подбор материалов и изготовление опытного образца. А по характеристикам и применимости, это двигатель, более всего, авиационный, а также, вполне применимый для автомобилей, самоходной техники и т.д., т.е. является необходимым на современном этапе развития техники и требований экологии.

Главными его преимуществами будут простота конструкции, экономичность, экологичность, высокий крутящий момент, компактность, низкий уровень шума даже без использования глушителя. Защитой от копирования будут его высокая технологичность и специальные материалы.

Простота конструкции обеспечивается его роторной конструкцией, в которой все детали двигателя совершают простое вращательное движение.

Эклологичность и экономичность обеспечивается 100%-ным мгновенным сгоранием топлива в прочной, высокотемпературной (порядка 2000 гр С), неохлаждаемой, отдельной камере сгорания, запираемой на это время клапанами. Охлаждение такого двигателя предусмотрени изнутри (охлаждение рабочего тела) любыми, необходимыми для этого, порциями воды, поступающими в рабочую секцию перед выстрелом очередных порций рабочего тела (газов горения) из камеры сгорания, с получением при этом, дополнительного давления водяного пара и полезной работы на рабочем валу.

Высокий крутящий момент даже на малых оборотах обеспечивается (сравнительно с поршневым ДВС), большим и постоянного размера плечом воздействия рабочего тела на рабочую лопатку. Этот фактор позволит для любого наземного транспорта обойтись без сложной и дорогой трансмиссии или, как минимум, существенно её упростить.

Несколько слов о его конструкции и работе.

ДВС имеет цилиндрическую форму с двумя роторно-лопаточными секциями, одна из которых служит для впуска и предварительного сжатия топливо-воздушной смеси и представляет собой известную и работоспособную секцию обычного роторного компрессора; другая, рабочая, представляет собой модернизированную ротационную паровую машину Марциневского; а между ними находится статичный массив прочного термостойкого материала, в котором выполнена отдельная, запираемая на время горения, камера сгорания с тремя невращающимися клапанами, 2 из которых свободные, по типу лепестковых, и один управляемый для стравливания давления перед впуском очередной порции ТВС.

При работе двигателя поворачивается рабочий вал с роторами и лопатками. Во входной секции лопатка засасывает и сжимает ТВС и, при увеличении давления выше давления камеры сгорания (после стравливания из неё давления) рабочая смесь загоняется в горячую (порядка 2000 гр С) камеру, поджигается искрой, мгновенно взрывается. При этом, впускной клапан закрывается, открывается выпускной клапан, а перед его открытием в рабочую секцию впрыскивается необходимое количество воды. Получается, что, в рабочую секцию выстреливаются под большим давлением сверхгорячие газы, а там порция воды, которая превращается в пар и парогазовая смесь приводит во вращение ротор двигателя, одновременно охлаждая его. По имеющейся информации уже есть материал, способный длительно выдерживать температуру до 10000 гр С, из которого нужно сделать камеру сгорания.

В мае 2018 г подана Заявка на изобретение. Заявка сейчас в стадии рассмотрения по существу.

Данная заявка на инвестиции подаётся для обеспечения финансирования НИОКР, создания опытного образца, его доводки и настройки до получения работоспособного образца данного двигателя. По времени этот процесс может занять год-два. Финансирование вариантов дальнейшей разработки модификаций двигателя для различной техники могут и должны будут разрабатываться отдельно под конкретные её образцы.

Дополнительные сведения

Реализация этого проекта - это проверка изобретения практикой. Получение работоспособного опытного образца. Полученный материал можно предложить всей отечественной машиностроительной отрасли для разработки моделей транспортных средств с эффективным ДВС на основе договоров с разработчиком и уплатой комиссионных сборов.

Можно выбрать своё, наиболее перспективное направления проектирования ДВС, скажем авиационное моторостроение для СЛА и предлагать выпускаемый двигатель, а также устанавливать этот ДВС на собственную разработку СЛА, опытный образец которого находится в стадии сборки.

Необходимо отметить что рынок личных самолётов в мире только начал развиваться, а у нас в стране он находится в зачаточном состоянии. И, в т.ч. именно, отсутствие подходящего ДВС сдерживает его развитие. А в нашей стране, с её бескрайними просторами, такая авиация будет востребована.

Аналитика рынка

Реализация проекта - это получение принципиально нового и крайне перспективного ДВС.

Сейчас упор идёт на экологию, и в качестве альтернативы поршневому ДВС предлагается электродвигатель, но ведь эту необходимую для него энергию нужно где-то выработать, накопить для него. Львиная доля электроэнергии вырабатывается на ТЭС, далеко не экологичных, что приведёт к значительным загрязнениям в местах их расположения. А срок службы накопителей энергии не превышает 2-х лет, где хранить этот вредный хлам? Результат предлагаемого проекта - эффектиыный и безвредный и, что не менее важно, удобный и привычный ДВС. Нужно только залить низкосортное топливо в бак.

Результат проекта - это перспектива замены всех поршневых двигателей в мире именно на такой. Это перспектива использовать могучую энергию взрыва в мирных целях, а конструктивное решение для этого процесса в ДВС предлагается впервые. Тем более что это сравнительно недорого.

Уникальность проекта

Это изобретение. Конструкция, позволяющая использовать детонацию в двигателе внутреннего сгорания предлагается впервые.

Во все времена, одной из главных задач конструирования ДВС было приблизиться к условиям детонационного горения, но не допускать её возникновения.

Каналы монетизации

Продажа лицензий на право производства.

Российская Федерация первой в мире провела успешные испытания детонационного жидкостного ракетного двигателя. Новую силовую установку создали в НПО «Энергомаш». Это успех для российской ракетно-космической отрасли, заявил корреспонденту Федерального агентства новостей научный обозреватель Александр Галкин .

Как сообщается на официальном сайте Фонда перспективных исследований, в новом двигателе тяга создается за счет контролируемых взрывов при взаимодействии топливной пары кислород-керосин.

«Значение успеха этих испытаний для опережающего развития отечественного двигателестроения трудно переоценить […] За ракетными двигателями такого рода будущее», - сообщил заместитель генерального директора и главный конструктор НПО «Энергомаш» Владимир Чванов.

Необходимо отметить, что к успешному испытанию новой силовой установки, инженеры предприятия шли последние два года. Исследовательские работы проводили ученые Новосибирского института гидродинамики им. М.А.Лаврентьева Сибирского отделения РАН и Московского авиационного института.

«Я думаю, что это новое слово в ракетной отрасли, и надеюсь, что оно окажется полезным для российской космонавтики. «Энергомаш» у нас сейчас единственная структура, которая разрабатывает ракетные двигатели и успешно ими торгует. Недавно они сделали для американцев двигатель РД-181, который по совокупной мощности слабее, нежели зарекомендовавший себя РД-180. Но дело то в том, что наметилось новое веяние в двигателестроении - уменьшение веса бортового оборудования космических кораблей приводит к тому, что двигатели становятся менее мощными. Это происходит за счет снижения выводимого веса. Так что надо пожелать успехов ученым и инженерам «Энергомаша», который работает, и что-то у него получается. Есть у нас еще головы креативные», - уверен Александр Галкин.

Необходимо отметить, что сам принцип создания реактивной струи за счет контролируемых взрывов может поднимать вопрос о безопасности будущих полетов. Однако переживать не стоит, так как ударная волна закручивается в камере сгорания двигателя.

«Уверен, систему гашения вибраций для новых двигателей придумают, потому что в принципе, традиционные ракеты-носители, которые разрабатывались еще Сергее Павловиче Королеве и Валентине Петровиче Глушко , тоже давали сильную вибрацию на корпус корабля. Но ведь как-то победили же, нашли способ погасить колоссальную тряску. Вот и здесь все будет так же», - заключает эксперт.

В настоящее время сотрудники НПО «Энергомаш» проводят дальнейшие изыскания по работе над стабилизацией тяги и уменьшением нагрузок на несущую конструкцию силовой установки. Как отмечают на предприятии, работа топливной пары кислород-керосин и сам принцип создания подъемной силы обеспечивает меньший расход топлива при большей мощности. В будущем начнутся испытания полноразмерной модели, и, возможно, его будут использовать для выведения на орбиту планеты полезных грузов или даже космонавтов.

В конце января появились сообщения о новых успехах российской науки и техники. Из официальных источников стало известно, что один из отечественных проектов перспективного реактивного двигателя детонационного типа уже прошел стадию испытаний . Это приближает момент полного завершения всех требуемых работ, по результатам которых космические или военные ракеты российской разработки смогут получить новые силовые установки с повышенными характеристиками. Более того, новые принципы работы двигателей могут найти применение не только в сфере ракет, но и в других областях.

В последних числах января вице-премьер Дмитрий Рогозин рассказал отечественной прессе о последних успехах научно-исследовательских организаций. Среди прочих тем он затронул процесс создания реактивных двигателей, использующих новые принципы работы. Перспективный двигатель с детонационным горением уже был доведен до испытаний. По словам вице-премьера, применение новых принципов работы силовой установки позволяет получить значительный прирост характеристик. В сравнении с конструкциями традиционной архитектуры наблюдается рост тяги порядка 30% .

Схема детонационного ракетного двигателя

Современные ракетные двигатели разных классов и типов, эксплуатируемые в различных областях, используют т.н. изобарический цикл или дефлаграционное горение . В их камерах сгорания поддерживается постоянное давление, при котором происходит медленное горение топлива. Двигатель на дефлаграционных принципах не нуждается в особо прочных агрегатах, однако ограничен в максимальных показателях. Повышение основных характеристик, начиная с определенного уровня, оказывается неоправданно сложным.

Альтернатива двигателю с изобарическим циклом в контексте повышения характеристик – система с т.н. детонационным горением. В таком случае реакция окисления горючего происходит за ударной волной, с высокой скоростью перемещающейся по камере сгорания . Это предъявляет особые требования к конструкции двигателя, но при этом дает очевидные преимущества. С точки зрения эффективности сгорания топлива детонационное горение на 25% лучше дефлаграционного. Также отличается от горения с постоянным давлением увеличенной мощностью тепловыделения с единицы площади поверхности фронта реакции. В теории, возможно повышение этого параметра на три-четыре порядка. Как следствие, скорость реактивных газов можно увеличить в 20-25 раз .

Таким образом, детонационный двигатель, отличаясь повышенным коэффициентом полезного действия, способен развивать большую тягу при меньшем расходе топлива . Его преимущества перед традиционными конструкциями очевидны, однако до недавнего времени прогресс в этой области оставлял желать лучшего. Принципы детонационного реактивного двигателя были сформулированы еще в 1940 году советским физиком Я.Б. Зельдовичем, но готовые изделия подобного рода все еще не дошли до эксплуатации. Главные причины отсутствия реальных успехов – проблемы с созданием достаточно прочной конструкции, а также сложность запуска и последующего поддержания ударной волны при применении существующих топлив.

Один из последних отечественных проектов в области детонационных ракетных двигателей стартовал в 2014 году и разрабатывается в НПО «Энергомаш» им. академика В.П. Глушко. Согласно доступным данным, целью проекта с шифром «Ифрит» являлось изучение основных принципов новой техники с последующим созданием жидкостного ракетного двигателя, использующего керосин и газообразный кислород. В основу нового двигателя, названного по имени огненных демонов из арабского фольклора, укладывался принцип спинового детонационного горения. Таким образом, в соответствии с основной идеей проекта, ударная волна должна непрерывно перемещаться по кругу внутри камеры сгорания.

Головным разработчиком нового проекта стало НПО «Энергомаш», а точнее созданная на его базе специальная лаборатория. Кроме того, к работам привлекли несколько других научно-исследовательских и проектных организаций. Программа получила поддержку Фонда перспективных исследований. Совместными усилиями все участники проекта «Ифрит» смогли сформировать оптимальный облик перспективного двигателя, а также создать модельную камеру сгорания с новыми принципами работы.

Для изучения перспектив всего направления и новых идей несколько лет назад была построена т.н. модельная детонационная камера сгорания, соответствующая требованиям проекта. Такой опытный двигатель с сокращенной комплектацией должен был использовать в качестве горючего жидкий керосин. В качестве окислителя предлагался газообразный водород. В августе 2016 года начались испытания опытной камеры. Важно, что впервые в истории проект подобного рода удалось довести до стадии стендовых проверок . Ранее отечественные и зарубежные детонационные ракетные двигатели разрабатывались, но не испытывались.

В ходе испытаний модельного образца удалось получить весьма интересные результаты, показывающие правильность использованных подходов. Так, за счет использования правильных материалов и технологий получилось довести давление внутри камеры сгорания до 40 атмосфер. Тяга опытного изделия достигла 2 т .

Модельная камера на испытательном стенде

В рамках проекта «Ифрит» были получены определенные результаты, но отечественный детонационный двигатель на жидком топливе пока еще далек от полноценного практического применения. Перед внедрением такого оборудования в новые проекты техники конструкторам и ученым предстоит решить целый ряд самых серьезных задач. Только после этого ракетно-космическая отрасль или оборонная промышленность смогут приступить к реализации потенциала новой техники на практике.

В середине января «Российская газета» опубликовала интервью с главным конструктором НПО «Энергомаш» Петром Левочкиным, темой которого стало текущее положение дел и перспективы детонационных двигателей. Представитель предприятия-разработчика напомнил об основных положениях проекта, а также затронул тему достигнутых успехов. Кроме того, он рассказал о возможных сферах применения «Ифрита» и подобных ему конструкций.

К примеру, детонационные двигатели могут использоваться в гиперзвуковых летательных аппаратах . П. Левочкин напомнил, что двигатели, сейчас предлагаемые для применения на такой технике, используют дозвуковое горение. При гиперзвуковой скорости аппарата полета поступающий в двигатель воздух необходимо затормозить до звукового режима. Однако энергия торможения должна приводить к дополнительным тепловым нагрузкам на планер. В детонационных двигателях скорость горения топлива достигает, как минимум, М=2,5. Благодаря этому появляется возможность повысить скорость полета летательного аппарата. Подобная машина с двигателем детонационного типа сможет разгоняться до скоростей, в восемь раз превышающих скорость звука .

Впрочем, реальные перспективы ракетных двигателей детонационного типа пока не слишком велики. По словам П. Левочкина, мы «только приоткрыли дверь в область детонационного горения». Ученым и конструкторам предстоит изучить множество вопросов, и только после этого можно будет заниматься созданием конструкций с практическим потенциалом. Из-за этого космической отрасли еще долго предстоит использовать жидкостные двигатели традиционной конструкции, что, однако, не отменяет возможности их дальнейшего совершенствования.

Интересен тот факт, что детонационный принцип горения находит применение не только в сфере ракетных двигателей. Уже существует отечественный проект авиационной системы с камерой сгорания детонационного типа, работающей по импульсному принципу . Опытный образец такого рода был доведен до испытаний, и в будущем может дать старт новому направлению. Новые двигатели с детонационным горением могут найти применение в самых разных сферах и частично заменить газотурбинные или турбореактивные двигатели традиционных конструкций.

Отечественный проект детонационного авиационного двигателя разрабатывается в ОКБ им. А.М. Люльки. Информация об этом проекте впервые была представлена на прошлогоднем международном военно-техническом форуме «Армия-2017». На стенде предприятия-разработчика присутствовали материалы по различным двигателям, как серийным, так и находящимся на стадии разработки. Среди последних был перспективный детонационный образец.

Суть нового предложения заключается в применении нестандартной камеры сгорания, способной осуществлять импульсное детонационное горение топлива в воздушной атмосфере. При этом частота «взрывов» внутри двигателя должна достигать 15-20 кГц. В перспективе возможно дополнительное увеличение этого параметра, в результате чего шум двигателя уйдет за пределы диапазона, воспринимаемого человеческим ухом. Такие особенности двигателя могут представлять определенный интерес.

Первый запуск опытного изделия «Ифрит»

Однако главные преимущества новой силовой установки связаны с повышенными характеристиками. Стендовые испытания опытных изделий показали, что они примерно на 30% превосходят традиционные газотурбинные двигатели по удельным показателям. Ко времени первой публичной демонстрации материалов по двигателю ОКБ им. А.М. Люльки смогло получить и достаточно высокие эксплуатационные характеристики. Опытный двигатель нового типа смог без перерыва проработать 10 минут. Суммарная наработка этого изделия на стенде на тот момент превысила 100 часов.

Представители предприятия-разработчика указывали, что уже сейчас можно создать новый детонационный двигатель с тягой 2-2,5 т, пригодный для установки на легкие самолеты или беспилотные летательные аппараты. В конструкции такого двигателя предлагается использовать т.н. резонаторные устройства, отвечающие за правильный ход горения топлива. Важным преимуществом нового проекта является принципиальная возможность установки таких устройств в любом месте планера .

Специалисты ОКБ им. А.М. Люльки работают над авиационными двигателями с импульсным детонационным горением более трех десятилетий, но пока проект не выходит из научно-исследовательской стадии и не имеет реальных перспектив. Главная причина – отсутствие заказа и необходимого финансирования. Если проект получит необходимую поддержку, то уже в обозримом будущем может быть создан образец двигателя, пригодный для использования на различной технике.

К настоящему времени российские ученые и конструкторы успели показать весьма примечательные результаты в области реактивных двигателей, использующих новые принципы работы. Существует сразу несколько проектов, пригодных для применения в ракетно-космической и гиперзвуковой областях. Кроме того, новые двигатели могут применяться и в «традиционной» авиации. Некоторые проекты пока находятся на ранних стадиях и еще не готовы к проверкам и другим работам, тогда как в иных направлениях уже были получены самые примечательные результаты.

Исследуя тематику реактивных двигателей с детонационным горением, российские специалисты смогли создать стендовый модельный образец камеры сгорания с желаемыми характеристиками. Опытное изделие «Ифрит» уже прошло испытания, в ходе которых было собрано большое количество разнообразной информации. С помощью полученных данных развитие направления будет продолжаться.

Освоение нового направления и перевод идей в практически применимую форму займет немало времени, и по этой причине в обозримом будущем космические и армейские ракеты в обозримом будущем будут комплектоваться только традиционными жидкостными двигателями. Тем не менее, работы уже вышли из чисто теоретической стадии, и теперь каждый тестовый запуск опытного двигателя приближает момент строительства полноценных ракет с новыми силовыми установками.

По материалам сайтов:
http://engine.space/
http://fpi.gov.ru/
https://rg.ru/
https://utro.ru/
http://tass.ru/
http://svpressa.ru/

Что на самом деле стоит за сообщениями о первом в мире детонационном ракетном двигателе, испытанном в России?

В конце августа 2016 года мировые информационные агентства облетела новость: на одном из стендов НПО «Энергомаш» в подмосковных Химках заработал первый в мире полноразмерный жидкостный ракетный двигатель (ЖРД) с использованием детонационного горения топлива - . К этому событию отечественная наука и техника шла 70 лет. Идея детонационного двигателя была предложена советским физиком Я. Б. Зельдовичем в статье «Об энергетическом использовании детонационного сгорания», опубликованной в «Журнале технической физики» еще в 1940 году. С тех пор во всем мире шли исследования и эксперименты по практической реализации перспективной технологии. В этой гонке умов вперед вырывались то Германия, то США, то СССР. И вот важный приоритет в мировой истории техники закрепила за собой Россия. В последние годы чем-то подобным нашей стране удается похвастать не часто.

На гребне волны

Испытание детонационного жидкостного ракетного двигателя


В чем же состоят преимущества детонационного двигателя? В традиционных ЖРД, как, впрочем, и в обычных поршневых или турбореактивных авиадвигателях, используется энергия, которая выделяется при сжигании топлива. В камере сгорания ЖРД при этом образуется стационарный фронт пламени, горение в котором происходит при неизменном давлении. Этот процесс обычного горения называется дефлаграцией. В результате взаимодействия горючего и окислителя температура газовой смеси резко возрастает и из сопла вырывается огненный столб продуктов сгорания, которые и образуют реактивную тягу.

Детонация - это тоже горение, но происходит оно в 100 раз быстрее, чем при обычном сжигании топлива. Этот процесс идет так быстро, что детонацию часто путают со взрывом, тем более что при этом выделяется столько энергии, что, к примеру, автомобильный мотор при возникновении этого явления в его цилиндрах и в самом деле может разрушиться. Однако детонация - это не взрыв, а вид горения столь стремительного, что продукты реакции даже не успевают расшириться, поэтому этот процесс, в отличие от дефлаграции, идет при постоянном объеме и резко возрастающем давлении.

На практике это выглядит следующим образом: вместо стационарного фронта пламени в топливной смеси внутри камеры сгорания формируется детонационная волна, которая движется со сверхзвуковой скоростью. В этой волне сжатия и происходит детонация смеси горючего и окислителя, а это процесс с термодинамической точки зрения куда более эффективный, чем обычное сжигание топлива. КПД детонационного сгорания на 25–30% больше, то есть при сжигании одинакового количества топлива получается больше тяги, а благодаря компактности зоны горения детонационный двигатель по мощности, снимаемой с единицы объема, теоретически на порядок превосходит обычные ЖРД.

Уже одного этого оказалось достаточно, чтобы привлечь самое пристальное внимание специалистов к этой идее. Ведь тот застой, который сейчас возник в развитии мировой космонавтики, на полвека застрявшей на околоземной орбите, в первую очередь связан с кризисом ракетного двигателестроения. В кризисе, кстати, находится и авиация, не способная перешагнуть порог трех скоростей звука. Этот кризис можно сравнить с ситуацией в поршневой авиации в конце 1930-х годов. Винт и двигатель внутреннего сгорания исчерпали свой потенциал, и только появление реактивных двигателей позволило выйти на качественно новый уровень высот, скоростей и дальности полетов.

Детонационный ракетный двигатель

Конструкции классических ЖРД за последние десятилетия были вылизаны до совершенства и практически подошли к пределу своих возможностей. Увеличить их удельные характеристики в будущем возможно лишь в очень незначительных пределах - на считаные проценты. Поэтому мировая космонавтика вынуждена идти по экстенсивному пути развития: для пилотируемых полетов на Луну приходится строить гигантские ракеты-носители, а это очень сложно и безумно дорого, во всяком случае для России. Попытка преодолеть кризис с помощью ядерных двигателей наткнулась на экологические проблемы. Появление детонационных ЖРД, быть может, и рано сравнивать с переходом авиации на реактивную тягу, но ускорить процесс освоения космоса они вполне способны. Тем более что у этого типа реактивных двигателей есть еще одно очень важное преимущество.

ГРЭС в миниатюре

Обычный ЖРД - это, в принципе, большая горелка. Для увеличения его тяги и удельных характеристик нужно поднимать давление в камере сгорания. При этом топливо, которое впрыскивается в камеру через форсунки, должно подаваться при большем давлении, чем реализуется в процессе сгорания, иначе струя топлива просто не сможет проникнуть в камеру. Поэтому самым сложным и дорогим агрегатом в ЖРД является вовсе не камера с соплом, которое у всех на виду, а топливный турбонасосный агрегат (ТНА), спрятанный в недрах ракеты среди хитросплетения трубопроводов.

К примеру, у самого мощного в мире ЖРД РД-170, созданного для первой ступени советской сверхтяжелой ракеты-носителя «Энергия» тем же НПО «Энергия», давление в камере сгорания составляет 250 атмосфер. Это очень много. Но давление на выходе из кислородного насоса, качающего окислитель в камеру сгорания, достигает величины 600 атм. Для привода этого насоса используется турбина мощностью 189 МВт! Только представьте себе это: колесо турбины диаметром 0,4 м развивает мощность, в четыре раза большую, чем атомный ледокол «Арктика» с двумя ядерными реакторами! При этом ТНА - это сложное механическое устройство, вал которого совершает 230 оборотов в секунду, а работать ему приходится в среде жидкого кислорода, где малейшая не искра даже, а песчинка в трубопроводе приводит к взрыву. Технологии создания такого ТНА и есть главное ноу-хау «Энергомаша», обладание которым позволяет российской компании и сегодня продавать свои двигатели для установки на американских ракетах-носителях Atlas V и Antares. Альтернативы российским двигателям в США пока нет.

Для детонационного двигателя такие сложности не нужны, поскольку давление для более эффективного сгорания обеспечивает сама детонация, которая и представляет собой бегущую в топливной смеси волну сжатия. При детонации давление увеличивается в 18–20 раз без всякого ТНА.

Чтобы получить в камере сгорания детонационного двигателя условия, эквивалентные, к примеру, условиям в камере сгорания ЖРД американского «Шаттла» (200 атм), достаточно подавать топливо под давлением… 10 атм. Агрегат, необходимый для этого, по сравнению с ТНА классического ЖРД - все равно что велосипедный насос рядом Саяно-Шушенской ГРЭС.

То есть детонационный двигатель будет не только мощнее и экономичнее обычного ЖРД, но и на порядок проще и дешевле. Так почему же эта простота в течение 70 лет не давалась в руки конструкторам?

Пульс прогресса

Главная проблема, которая встала перед инженерами, - как совладать с детонационной волной. Дело ведь не только в том, чтобы сделать двигатель прочнее, чтобы он выдержал повышенные нагрузки. Детонация - это не просто взрывная волна, а кое-что похитрее. Взрывная волна распространяется со скоростью звука, а детонационная со сверхзвуковой скоростью - до 2500 м/с. Она не образует стабильного фронта пламени, поэтому работа такого двигателя носит пульсирующий характер: после каждой детонации необходимо обновить топливную смесь, после чего запустить в ней новую волну.

Попытки создать пульсирующий реактивный двигатель предпринимались задолго до идеи с детонацией. Именно в применении пульсирующих реактивных двигателей пытались найти альтернативу поршневым моторам в 1930-е годы. Привлекала опять же простота: в отличие от авиационной турбины для пульсирующего воздушно-реактивного двигателя (ПуВРД) не нужны были ни вращающийся со скоростью 40 000 оборотов в минуту компрессор для нагнетания воздуха в ненасытное чрево камеры сгорания, ни работающая при температуре газа свыше 1000˚С турбина. В ПуВРД давление в камере сгорания создавали пульсации в горении топлива.

Первые патенты на пульсирующий воздушно-реактивный двигатель были получены независимо друг от друга в 1865 году Шарлем де Луврье (Франция) и в 1867 году Николаем Афанасьевичем Телешовым (Россия). Первую работоспособную конструкцию ПуВРД запатентовал в 1906 году русский инженер В.В. Караводин, годом позже построивший модельную установку. Установка Караводина вследствие ряда недостатков не нашла применения на практике. Первым ПуВРД, работавшим на реальном летательном аппарате, стал немецкий Argus As 014, основанный на патенте 1931 года мюнхенского изобретателя Пауля Шмидта. Argus создавался для «оружия возмездия» - крылатой бомбы «Фау-1». Аналогичную разработку создал в 1942 году советский конструктор Владимир Челомей для первой советской крылатой ракеты 10Х.

Конечно, эти двигатели еще не были детонационными, поскольку в них использовались пульсации обычного горения. Частота этих пульсаций была невелика, что порождало характерный пулеметный звук при работе. Удельные характеристики ПуВРД из-за прерывистого режима работы в среднем были невысоки и после того, как конструкторы к концу 1940-х годов справились со сложностями создания компрессоров, насосов и турбин, турбореактивные двигатели и ЖРД стали королями неба, а ПуВРД остались на периферии технического прогресса.

Любопытно, что первые ПуВРД немецкие и советские конструкторы создали независимо друг от друга. Кстати, и идея детонационного двигателя в 1940 году пришла в голову не одному только Зельдовичу. Одновременно с ним те же мысли высказали Фон Нейман (США) и Вернер Деринг (Германия), так что в международной науке модель использования детонационного горения назвали ZND.

Идея объединить ПуВРД с детонационным горением была очень заманчивой. Но фронт обычного пламени распространяется со скоростью 60–100 м/с и частота его пульсаций в ПуВРД не превышает 250 в секунду. А детонационный фронт движется со скоростью 1500‒2500 м/с, таким образом частота пульсаций должна составлять тысячи в секунду. Реализовать такую скорость обновления смеси и инициации детонации на практике было затруднительно.

Тем не менее попытки создания работоспособных пульсирующих детонационных двигателей продолжались. Работа специалистов ВВС США в этом направлении увенчалась созданием двигателя-демонстратора, который 31 января 2008 года впервые поднялся в небо на экспериментальном самолете Long-EZ. В историческом полете двигатель проработал… 10 секунд на высоте 30 метров. Тем не менее приоритет в данном случае остался за Соединенными Штатами, а самолет по праву занял место в Национальном музее ВВС США.

Между тем уже давно была придумана другая, гораздо более перспективная схема детонационного двигателя.

Как белка в колесе

Мысль закольцевать детонационную волну и заставить ее бегать в камере сгорания как белка в колесе родилась у ученых в начале 1960-х годов. Явление спиновой (вращающейся) детонации теоретически предсказал советский физик из Новосибирска Б. В. Войцеховский в 1960 году. Почти одновременно с ним, в 1961 году, ту же идею высказал американец Дж. Николлс из Мичиганского университета.

Ротационный, или спиновый, детонационный двигатель конструктивно представляет собой кольцевую камеру сгорания, топливо в которую подается с помощью радиально расположенных форсунок. Детонационная волна внутри камеры движется не в осевом направлении, как в ПуВРД, а по кругу, сжимая и выжигая топливную смесь перед собой и в конце концов выталкивая продукты сгорания из сопла точно так же, как винт мясорубки выталкивает наружу фарш. Вместо частоты пульсаций мы получаем частоту вращения детонационной волны, которая может достигать нескольких тысяч в секунду, то есть практически двигатель работает не как пульсирующий, а как обычный ЖРД со стационарным горением, но куда более эффективно, поскольку на самом деле в нем происходит детонация топливной смеси.

В СССР, как и в США, работы над ротационным детонационным двигателем шли с начала 1960-х годов, но опять же при кажущейся простоте идеи ее реализация потребовала решения головоломных теоретических вопросов. Как организовать процесс так, чтобы волна не затухала? Необходимо было понимание сложнейших физико-химических процессов, происходящих в газовой среде. Тут расчет велся уже не на молекулярном, а на атомарном уровне, на стыке химии и квантовой физики. Процессы эти более сложны, чем те, что происходят при генерации луча лазера. Именно поэтому лазер уже давно работает, а детонационный двигатель - нет. Для понимания этих процессов потребовалось создать новую фундаментальную науку - физико-химическую кинетику, которой 50 лет назад еще не существовало. А для практического расчета условий, при которых детонационная волна не будет затухать, а станет самоподдерживающейся, потребовались мощные ЭВМ, появившиеся лишь в последние годы. Вот какой фундамент необходимо было положить в основание практических успехов по укрощению детонации.

Активные работы в этом направлении ведутся в Соединенных Штатах. Этими исследованиями занимаются Pratt & Whitney, General Electric, NASA. К примеру, в научно-исследовательской лаборатории ВМФ США разрабатываются спиновые детонационные газотурбинные установки для флота. В ВМФ США используется 430 газотурбинных установок на 129 кораблях, в год они потребляют топлива на три миллиарда долларов. Внедрение более экономных детонационных газотурбинных двигателей (ГТД) позволит сберечь гигантские средства.

В России над детонационными двигателями работали и продолжают работать десятки НИИ и КБ. В их числе и НПО «Энергомаш» - ведущая двигателестроительная компания российской космической промышленности, со многим предприятиями которой сотрудничает банк ВТБ. Разработка детонационного ЖРД велась не один год, но для того чтобы вершина айсберга этой работы засверкала под солнцем в виде успешного испытания, потребовалось организационное и финансовое участие небезызвестного Фонда перспективных исследований (ФПИ). Именно ФПИ выделил необходимые средства для создания в 2014 году специализированной лаборатории «Детонационные ЖРД». Ведь несмотря на 70 лет исследований, эта технология до сих пор остается в России «слишком перспективной», чтобы ее финансировали заказчики вроде Министерства обороны, которым нужен, как правило, гарантированный практический результат. А до него еще очень далеко.

Укрощение строптивой

Хочется верить, что после всего сказанного выше становится понятна та титаническая работа, которая проглядывает между строк краткого сообщения об испытаниях, прошедших на «Энергомаше» в Химках в июле - августе 2016 года: «Впервые в мире был зарегистрирован установившийся режим непрерывной спиновой детонации поперечных детонационных волн частотой около 20 кГц (частота вращения волны - 8 тысяч оборотов в секунду) на топливной паре „кислород - керосин“. Удалось добиться получения нескольких детонационных волн, уравновешивавших вибрационные и ударные нагрузки друг друга. Специально разработанные в центре имени М. В. Келдыша теплозащитные покрытия помогли справиться с высокими температурными нагрузками. Двигатель выдержал несколько пусков в условиях экстремальных вибронагрузок и сверхвысоких температур при отсутствии охлаждения пристеночного слоя. Особую роль в этом успехе сыграло создание математических моделей и топливных форсунок, позволявших получать смесь необходимой для возникновения детонации консистенции».

Разумеется, не стоит преувеличивать значение достигнутого успеха. Создан лишь двигатель-демонстратор, который проработал относительно недолго, и о его реальных характеристиках ничего не сообщается. По информации НПО «Энергомаш», детонационный ЖРД позволит поднять тягу на 10% при сжигании того же количества топлива, что и в обычном двигателе, а удельный импульс тяги должен увеличиться на 10–15%.

Создание первого в мире полноразмерного детонационного ЖРД закрепило за Россией важный приоритет в мировой истории науки и техники.

Но главный результат состоит в том, что практически подтверждена возможность организации детонационного горения в ЖРД. Однако путь до использования этой технологии в составе реальных летательных аппаратов предстоит еще долгий. Другой важный аспект заключается в том, что еще один мировой приоритет в области высоких технологий отныне закреплен за нашей страной: впервые в мире полноразмерный детонационный ЖРД заработал именно в России, и этот факт останется в истории науки и техники.

Для практической реализации идеи детонационного ЖРД потребовалось 70 лет напряженного труда ученых и конструкторов.

Фото: Фонд перспективных исследований

Общая оценка материала: 5

АНАЛОГИЧНЫЕ МАТЕРИАЛЫ (ПО МЕТКАМ):

Графен прозрачный, магнитный и фильтрующий воду Отец видеозаписи Александр Понятов и AMPEX



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png