Детский электромобиль с широтно-импульсным управлением двигателем

Катание на педальном автомобиле - хорошая забава для малыша. Но большую радость доставит езда на электромобиле. О том, как переделать педальный автомобиль в электромобиль, рассказывается в предлагаемой статье.

На площадках аттракционов в парках, во многих магазинах игрушек можно увидеть электромобили зарубежного производства. К сожалению, они сравнительно дороги, не позволяют регулировать скорость езды, двигаться задним ходом, в них не предусмотрены указатели поворота и звуковой сигнал. В то же время отечественных аналогов нет.

Однако выход из положения есть - детский автомобиль "Спорт" (рис. 1), выпускаемый Гомельским заводом Томсельмаш". В конструкцию автомобиля входят следующие узлы: рулевая колонка 1, фара 2, кнопочный выключатель фары 3, фонари 4 и переключатель 5 указателей поворота, кнопка звукового сигнала 6, щиток 7, ручной тормоз 8, сиденье 9, колеса 10, цепной привод 11, рама 12. Рассчитан он на детей в возрасте от 3-х до 7 лет и максимальную нагрузку 50 кг.

При конструировании электромобиля на базе указанного педального ставилась задача наиболее простыми и доступными средствами обеспечить удобство эксплуатации и достаточное сходство со "взрослым" автомобилем.

В качестве электропривода решено было использовать электродвигатель вентилятора охлаждения мощностью 90 Вт от автомобиля "Жигули" прошлых лет выпуска. Подойдет и современный такой же двигатель мощностью 120 Вт. Была приобретена также педаль управления от электропривода швейной машины. Она имеет внутри пластмассовую шестерню, насаженную на вал переменного резистора, и пластмассовый зубчатый сектор, передающий перемещение педали на шестерню.

Далее автомобиль подвергся модернизации. Были сняты педали с ведущей шестерней, детали их крепления и цепной привод, вырезано из жести толщиной 0,5 мм основание пола и приварено к каркасу автомобиля, к основанию приварены ограничительные дуги из трубчатых ножек от старых стульев, а к ним приварена облицовка из жести толщиной 0,2 мм. Все неплотности замазаны силиконовым герметиком, поверхности зашкурены и покрашены.

Место сварки заднего вала с ведомой шестерней было аккуратно обточено на токарном станке, после чего шестерня была удалена, а вместо нее установлена шестерня с педального вала, сдвинутая вбок и приваренная к валу. В задней части автомобиля под сиденьем расположен несущий короб, согнутый из листовой стали толщиной 1 мм, в котором установлены аккумуляторная батерея, двигатель с редуктором и цепная передача (рис. 2).

А теперь о конструкции ходовой части. Поскольку механическая характеристика двигателя была неизвестна (и попытки найти ее в литературе оказались безуспешными), то необходимое минимальное передаточное отношение редуктора определялось экспериментально и оказалось равным 10. При таком передаточном числе осуществлялось трогание с места при максимальной загрузке (водитель весом 48 кг, батарея, двигатель и редуктор).

Как основа для редуктора, первоначально использовался редуктор РД-09-Т 1971 г. выпуска с передаточным числом 1/137. Он имеет стальную заднюю крышку с местом под осевой подшипник, привинчивающуюся шестью винтами к корпусу. Это позволило удалить лишние спаренные шестерни, оставив лишь одну пару, в результате чего передаточное отношение снизилось до 1/8. Дополнительное передаточное отношение 1/1,5 получилось за счет установки зубчатого колеса цепной передачи (находившегося ранее на задней оси) на выходной вал редуктора. Редуктор прикреплен на боковой крышке двигателя четырьмя винтами М5 к проушинам с резьбой через упоры из медной трубки длиной 11 мм.

Увеличение передаточного отношения было обусловлено необходимостью добиться плавного изменения скорости движения при широтно-импульсном (ШИ) управлении двигателем.

Двигатель установлен на несущем коробе с помощью уголков из листа толщиной 1 мм, закрепляемых на двигателе его стяжными винтами. Для этого пришлось сточить часть обеих силуминовых крышек двигателя по толщине, чтобы длины стяжек хватило на крепление уголков.

Во время эксплуатации автомобиля выяснилось, что принятая в педальном прототипе (и перенесенная на электромобиль) схема привода на одно заднее колесо не является оптимальной, поскольку не обеспечивает необходимого сцепления с дорогой и приводит к повышенному износу ведущего колеса. Пришлось жестко связать с осью оба задних колеса. Для этого свободный конец оси был обточен напильником, чтобы образовалась лыска, а на ранее свободное колесо насажена одна из двух шайб с фиксатором, снятая с ведущего колеса. В итоге оба задних колеса стали ведущими.

Чтобы увеличить продолжительность движения электромобиля от одной зарядки аккумулятора, все пары трения (передние колеса, ротор двигателя, ось редуктора) желательно перевести с подшипников скольжения на подшипники качения.

Электрическая часть электромобиля сравнительно проста (рис. 3). Она содержит блок ШИ управления двигателем с узлом реверсирования на переключателе SA2, блок реле указателей поворота, узел включения фары и узел включения звукового сигнала. Основой блока ШИ управления служит генератор с изменяемой скважностью импульсов, выполненный на микросхеме К561ТЛ1. Выбор этой микросхемы диктовался необходимостью обеспечить максимально широкий диапазон регулировки скважности импульсов, что, в свою очередь, позволяет получить действующее значение выходного напряжения от 0,5 до 12 В. Вместо этой микросхемы допустимо установить К561ЛА7, К561ЛЕ5, К561ЛН1 и др., имеющие в своем составе достаточное количество инверторов, но диапазон регулировки при указанном сопротивлении резистора R1 сократился до 5... 12 В.

(нажмите для увеличения)

Управление двигателем осуществляется через ключ на полевом транзисторе VT1, на месте которого, кроме указанного на схеме, допустимо включить IRFZ46N, КП912А либо два параллельно соединенных КП921А. Транзистор устанавливают на радиатор из алюминиевого листа толщиной 2 мм, площадью 24 см2. В случае отсутствия полевого транзистора ключ может быть выполнен на биполярных - кремниевом и германиевом (рис. 4,а) либо двух кремниевых (рис. 4,б). Но при этом возрастут потери мощности на управление (а также понадобится радиатор большей площади), что уменьшит продолжительность езды на электромобиле. Диод VD3 устраняет всплески напряжения на индуктивности двигателя при выключении ключа.

На электромагнитном реле К1 (РЭС15 паспорт РС4.591.006) выполнен блок указателей поворота. Когда подвижный контакт переключателя SA3 переводят, например, в левое по схеме положение, через лампу EL1 начинает заряжаться конденсатор С2. Как только напряжение на нем достигнет напряжения срабатывания реле, замкнутся контакты К1.1 и подадут питающее напряжение на лампу - она загорится. Конденсатор разрядится через обмотку реле, и оно отпустит. Контакты К1.1 разомкнутся, лампа погаснет. Вновь начнет заряжаться конденсатор, процесс повторится. В итоге лампа указателя левого поворота будет мигать до тех пор, пока подвижный контакт переключателя SA3 не переведут в среднее положение.

В электромобиле установлена мотоциклетная аккумуляторная батарея 6МТС-9, емкости которой в заряженном состоянии хватает примерно на час езды. Если же установить батарею большей емкости, например, от автомобиля, продолжительность езды возрастет до 6...8 ч. Подключают батарею выключателем SA1, контакты которого должны выдерживать ток до 25 А.

Звуковой сигнал НА1 - от автомобиля, включают его кнопкой SB1, расположенной в центре рулевого колеса. Установленные в автомобиле лампы на напряжение 2,5 В заменяют другими - на напряжение 13 В. При этом из фары извлекают гальванические элементы, а вместо них устанавливают детали блока реле указателей поворота.

Конденсатор С1 - керамический, С2 - оксидный любого типа на напряжение, не ниже указанного на схеме. Постоянные резисторы - МЛТ-0,25, переменный - СПО-1.

Транзистор с радиатором размещают внутри педали в нижней части корпуса напротив вентиляционных отверстий. Для обеспечения доступа воздуха к ним корпус установлен на прокладках высотой 5 мм от пола. Остальные детали блока ШИ также размещены внутри педали и смонтированы на отрезке платы, вырезанной по размерам платы, размещавшейся ранее в педали. Микросхему желательно установить в панельку, чтобы была возможность ее замены в случае необходимости изменения диапазона напряжений на двигателе. Переключатель SA2 расположен на рулевой колонке вверху, выключатель SA1 - внизу.

В последнее время в продаже появилась очень интересная игрушка - детский электромобиль. Раньше о таком можно было мечтать, но вот теперь такие девайсы стали вполне доступны, и как следствие - популярны. Вот и я упил внуку такой электромобиль, в процессе эксплуатации которого сразу возникло желание его модернизировать. Ниже приводится его краткое описание:

Ходовая часть имеет два двигателя на напряжение 12В, соответственно такое и и бортовое питание - электромобиль работает от двух аккумуляторов по 6В 8ампер. Имеется пульт дистанционного управления, многофункциональный руль с музыкальными сигналами и возможностью подключения МР3 плеера, открывающиеся двери, ручное переключение направления движения взад-вперед, звуковой сигнал, зеркала заднего вида, передние фары.

Характеристики детского электромобиля:
· Подходит для детей до 7 лет
· Ремни безопасности
· Пульт радиоуправления
· Приводится в движение с помощью педали газа: давление - ход, отпускание - остановка
· Привод задний
· Аккумулятор 2х6V
· Две скорости движения
· Максимальный вес пассажира 45 кг.

Сам электромобиль довольно неплохой, но выскажу свои наблюдения и некоторые минусы конструкции:

1. При подключении МП3 звук очень некачественный.
2. Фары включаются автоматически при движении только вперед.
3. При начале движения машина резко дергается с отрывом передних колес от земли. Это происходит в следствии того, что аккумуляторы расположены под сиденьем и их вес выходит за пределы задней оси.

После разборки и осмотра было принято решение произвести ряд доработок.

1. Перенести аккумуляторы на свое место под капот - как у всех нормальных машин.
2. Добавить еще один аккумулятор на 6 в для дополнительной подсветки.
3. Сделать ближний и дальний свет фар на светодиодах.
4. Поставить подсветку в задние подфарники.
5. Поставить подсветку в верхние подфарники.
6. Сделать нормальный усилитель с колонками для подключения МП3 плеера.
7. Сделать устройство плавного пуска двигателей электромобиля.

После того, как план составлен, приступаем к модернизации.

Снимаем передние фары и видим в них обычную лампочку накаливания! Причём стоит одна лампочка, хотя там место конструктивно предназначено для двух. Да и лампочка очень слабая.

У меня были готовы уже рассеиватели на ближний свет с углом рассеивания 65 градусов на дальний 45 и светодиоды на радиаторах.

Итак, сделал по два отверстия в фарах по 22 мм там место было как раз для них. Установил светодиоды с рассеивателями, подключил попарно, собрал все назад и откорректировал дальний и ближний свет. Закрепил все силиконовым пистолетом.

Аналогичным образом сделал и задние подфарники - там вообще не было подсветки, хотя тоже есть место под два светодиода. Поставил по два 10 мм светодиода.

Все это дело объединил под одним трехдиапазонным выключателем (вывел его на торпедку) и отдельным аккумулятором.

Переставил аккумуляторы под капот, вперед, и добавил для подсветки еще один аккумулятор. Теперь свет можно включать в любое время - задние подфарники включаются и при дальнем и при ближнем свете.

На этом закончим с основными светодиодами, доделаем габаритные подфарники.

Сначала для красоты решил вставить туда тоже светодиоды, но так как она снимается и дома не используется (чтобы легче проезжать под столами) то она будет автономна. Для этого я ее разобрал, там на отражатель была приклеена тонкая фольга. Решил сделать более качественный отражатель, из тонкой жести (консервной банки). Тоже поставил по два 5мм светодиода, вставил туда источник питания и вывел выключатель. На второй подфарник сделал отвод питания.

Ещё сделал в электромобиль мигалку, но после первой же вечерней прогулки решили от нее избавится, так как она раздражает.

Теперь сделаем небольшой аудиоусилитель с колонками, для подключения МП3 плеера. А основой для нашей новой автомузыки будет вот такой девайс

Брал его когда-то для ноутбука - там был звук тихий, лэптопа уже нет давно, а вот это дело осталось. Это как раз колонки и усилитель - все в одном флаконе. И кстати звук довольно приличный, как для такой маленькой акустики. Питание у него 4 пальчиковых батарейки, итого как раз 6 вольт, которые есть специально для подсветки.

А вот теперь самое главное, ради чего все это затевалось - плавный пуск двигателей. Много лазил по форумам и оказалось что практически все схемы работают на шим-регуляторе. То тесть от переменного сопротивления, переделывается педаль газа. Однако данный детский автомобиль имеет дистанционный пульт управления и вся электронная схема сидит на нем. Педаль газа просто микрик - жмем, едет, отпускаем - стоит. Кроме того внуку еще только годик, поэтому управлять электромобилем ближайшие полгода будем мы. При изучении схемы автомобиля было выяснено, что на первой скорости (скорости переключаются в ручную на торпедки авто) двигатели включаются последовательно друг другу и на каждый идет по 6 вольт. Скорость движения около 4 км/час. На второй скорости двигатели переключаются параллельно, и на каждый идет по 12 вольт, скорость движения при этом около 8 км/час. В общую схему заходит 12 вольт, а там уже через реле она дает выход на двигатели, включается первое реле идет (+12) машина едет вперед, включается второе реле идет (-12) соответственно машина едет назад. Так же стоят еще два реле на включения поворота руля влево и в право.

Поэтому решил отделить питание двигателей на движения вперед и назад, и запустить через шим. Кроме этого схема плавного пуска должна быть постоянно выключена и включатся только когда включается реле вперед или назад. Для этого было задействовано еще одно реле для шим регулятора, она включается и от первого реле и от второго реле которое дают импульс движения вперед и назад, чтобы не было двойных срабатываний, питание на реле идет через отдельные диоды. В процессе экспериментов собрал и опробовал несколько разных схем, и остановился на вот этой (спасибо Максиму lackys)


Очень плавная - до полной мощности она набирает за 5 секунд, мне этого даже много, поэтому уменьшил ёмкость С1 до 47 мкф и соответственно уменьшилось время полного старта до 2 секунд. Также заменил управляющий транзистор на IRF1405. Он по даташиту 169А, что вполне хватит.

Естественно поставил транзистор на радиатор. Шим-регулятор плавного старта в сборе:

1. белые провода питание для шим через реле, под кембриками диоды.
2. черный (-)
3. красный (+)
4. оранжевый (выход плавного пуска)
5. Попался разъем от компа но 4 пиновый не стал мудрить добавил дополнительный пин отдельно и все.

Вид с задний стороны платы с изображением группы контактов реле, и питания реле.

Место разреза дорожки в плате чтобы отделить питание для двигателей и запустить его через шим. Разрезается одна дорожка минусовая и подается туда выход с шима. Дополнительной перемычкой минусовое питание подается на плату чтобы вся остальная часть платы была запитана. На фото точки пайки шима к плате.

Вот и все, в результате тестирования и полевых испытаний все остались довольны.

Обсудить статью ДЕТСКИЙ ЭЛЕКТРОМОБИЛЬ

Полевые транзисторы служат опорой современной микроэлектроники. Без них не было бы ни СБИС, ни ПЛИС, ни MK. Все современные компьютеры, мобильные телефоны, ноутбуки построены на полевых транзисторах, и достойной альтернативы им пока не видно.

На выходах портов MK находятся каскады с полевыми транзисторами. Казалось бы, что подключить к ним ещё одного полевого «тёзку» - проще простого. Однако новичок-радиолюбитель впадает в шоковое состояние, узнав, что существуют десятки разновидностей полевых транзисторов с разной структурой проводимости, разной топологией изоляции затвора, разной технологией легирования канала, разными фирменными названиями и брэндами, а также разными условными графическими изображениями на электрических схемах.

К счастью, в цифровой, импульсной и преобразовательной технике, как правило, используются полевые МДП-транзисторы с изолированным затвором, имеющие n- или -проводимость канала. Это достаточно узкий класс электронных приборов, хорошо исследованный и легко поддающийся изучению.

Для прямого сопряжения с MK подойдут те полевые транзисторы, которые имеют низкое напряжение отсечки «затвор - исток» (параметр Gate Theshold Voltage в пределах 0.5…2.5 В). Технологические достижения последнего десятилетия сделали такие транзисторы малогабаритными и дешёвыми. Мощные полевые транзисторы обычно подключаются к MK через буферные каскады.

Если сравнивать полевые и биполярные транзисторы, то выводы «база - коллектор - эмиттер» (Base - Collector - Emitter) в первом приближении эквивалентны выводам «затвор - сток - исток» (Gate - Drain - Source). Соответственно, схемы ключевых каскадов у них будут очень похожими. Из отличий - полевые транзисторы управляются напряжением, а не током. Они имеют высокое входное и низкое выходное сопротивление, что улучшает экономичность. С другой стороны, большая ёмкость перехода «затвор - исток» 100…3000 пФ снижает быстродействие, а значительный технологический разброс параметров заставляет проектировать схемы с перестраховкой и с запасом «на всякий пожарный случай».

На Рис. 2.69, а…ж и Рис. 2.70, a…r приведены схемы ключевых каскадов соответственно с одним и двумя полевыми транзисторами. На Рис. 2.71, a…r представлены варианты совместного включения полевых и биполярных транзисторов.

Таблица 2.11. Параметры полевых транзисторов

В Табл. 2.11 приведены типовые параметры полевых транзисторов разной мощности. Транзисторы с я-каналом аналогичны транзисторам структуры п-р-п, а транзисторы с -каналом - транзисторам структуры р-п-р. Только вот стрелки на условном изображении полевых транзисторов имеют направление, прямо противоположное своим биполярным аналогам.

Рис. 2.69. Схемы подключения одного полевого транзистора к MK (начало):

а) классический инвертирующий ключ на л-канальном транзисторе VT1. Главным параметром при выборе транзистора является напряжение отсечки затвора, которое при рабочем токе нагрузки R H не должно превышать напряжение питания MK. Резистор R3 (R1) сопротивлением 51…510 кОм ставят, чтобы транзистор VT1 был закрыт в следующих случаях: при рестарте MK, при срабатывании супервизора просадок питания, при пропадании напряжения +5 В, при переводе линии MK в Z-состояние. Резистор R3 ускоряет разряд ёмкости затвора. Резистор R2 защищает линию MK от наводок большой амплитуды через цепь затвора со стороны стока при коммутации мощных нагрузок. Он обязателен при высоких напряжениях в нагрузке и большом уровне помех. Резисторы R1, R3 допускается не ставить, если нагрузка не критична к случайным включениям. По большому счёту затвор полевого транзистора VT1 в данной схеме может «висеть в воздухе», поскольку его защищают от статического электричества внутренние диоды MK;

б) диоды VD1, VD2 ставят для защиты полевого транзистора VT1 от выбросов напряжения в индуктивной нагрузке и для снижения помех в цепи питания. Современные полевые транзисторы серии MOSFET имеют встроенные мощные диоды, аналогичные VD2. Резисторы R1, R2 можно не ставить при низких напряжениях и резистивной нагрузке;

в) гальванически изолированое включение/выключение транзистора VT1. На выходе MK генерируется ВЧ-сигнал, который выпрямляется и фильтруется элементами VD1…VD4, C3, R2. Стабилитрон VD5 защищает затвор транзистора VT1. Трансформатор T1 наматывается на кольце из феррита N30, обмотка I содержит 15, а обмотка II - 30 витков провода ПЭВ-0.2;

г) ключ на полевом -канальном транзисторе VT1 эквивалентен ключу на биполярном транзисторе р-п-р. При ВЫСОКОМ уровне на выходе МК транзистор VT1 закрыт, а при переводе в режим входа с Z-состоянием транзистор открывается из-за наличия резистора R1\ О

О Рис. 2.69. Схемы подключения одного полевого транзистора к MK (окончание):

д) предохранитель FU1 срабатывает при аварийном токе в нагрузке R H ;

е) часть схемы электронного дверного звонка. Защита транзистора VT1 производится варторами RU1, RU2n конденсатором C1. Индикатор прихода гостей - светодиод HL1\

ж) диод VD1 защищает линию МК от высокого напряжения при пробое транзистора VT1 и от наведенных помех при наличие мощной индуктивной нагрузки R H .

а) последовательное включение n- и -канальных транзисторов VT1, VT2 для коммутации «высоковольтной» нагрузки R H . Диод VD1 ускоряет разряд ёмкости затвора транзистора VT1\

б) параллельное включение двух полевых транзисторов для увеличения тока нагрузки;

в) DA1 - это специализированный драйвер (фирма International Rectifier), обслуживающий мощные полевые транзисторы VT1, VT2 (ток до 1.5 А). Диод VD1 повышает надёжность; О

О Рис. 2.70. Схемы подключения двух полевых транзисторов к MK (окончание):

г) преобразователь постоянного напряжения 12 В в переменное напряжение 220 В (DC/AC). Двухтактный каскад на транзисторах K77, VT2 управляется буферной логической микросхемой DD1. Сигналы с выходов МК должны быть противофазными, но с небольшой «бестоковой» паузой, равной 10% от длительности периода (для устранения сквозныхтоков и повышения КПД). Конденсатор С/ компенсирует реактивность обмотки трансформатора T1 и приближает форму выходного сигнала 50 Гц к синусоиде.

Рис. 2.71. Схемы подключения одного полевого и одного биполярного транзисторов к MK

а) буферный биполярный транзистор VT1 управляет мощным полевым транзистором VT2. Подбором резистора R4 можно уменьшить выбросы напряжения на стоке транзистора VT2, возникающие в момент переключения сигнала;

б) биполярный ключ на транзисторе VT1 (возможная замена KT503) ускоряет разряд ёмкости затвора мощного полевого транзистора VT2. Конденсатор C1 увеличивает крутизну фронта сигнала, поступающего с выхода MK. Резистор R1 обеспечивает открытое состояние транзистора VT1 и закрытое состояние транзистора VT2 при рестарте MK; О

О Рис. 2.71. Схемы подключения одного полевого и одного биполярного транзисторов к MK

(окончание):

в) резисторы R1, R2 одновременно не дают «висеть в воздухе» базе транзистора VT1 и затвору транзистора VT2npu рестарте MK;

г) маломощный биполярный транзистор VT1, как правило, дешевле полевого аналога, а полевой транзистор VT2 обеспечивает более низкое падение напряжения в открытом состоянии, чем биполярный аналог.

При работе со сложными схемами полезным является использование различных технических хитростей, которые позволяют добиться поставленной цели малыми усилиями. Одной из них является создание транзисторных ключей. Чем они являются? Зачем их стоит создавать? Почему их ещё называют «электронные ключи»? Какие особенности данного процесса есть и на что следует обращать внимание?

На чем делаются транзисторные ключи

Они выполняются с использованием полевых или Первые дополнительно делятся на МДП и ключи, которые имеют управляющий р-n-переход. Среди биполярных различают не/насыщенные. Транзисторный ключ 12 Вольт сможет удовлетворить основные запросы со стороны радиолюбителя.

Статический режим работы

В нём проводится анализ закрытого и открытого состояния ключа. В первом на входе находится низкий уровень напряжения, который обозначает сигнал логического нуля. При таком режиме оба перехода находятся в обратном направлении (получается отсечка). А на коллекторный ток может повлиять только тепловой. В открытом состоянии на входе ключа находится высокий уровень напряжения, соответствующий сигналу логической единицы. Возможной является работа в двух режимах одновременно. Такое функционирование может быть в области насыщения или линейной области выходной характеристики. На них мы остановимся детальнее.

Насыщение ключа

В таких случаях переходы транзистора являются смещенными в прямом направлении. Поэтому, если изменится ток базы, то значение на коллекторе не поменяется. В кремниевых транзисторах для получения смещения необходимо примерно 0,8 В, тогда как для германиевых напряжение колеблется в рамках 0,2-0,4 В. А как вообще достигается насыщение ключа? Для этого увеличивается ток базы. Но всё имеет свои пределы, равно как и увеличение насыщения. Так, при достижении определённого значения тока, оно прекращает увеличиться. А зачем проводить насыщение ключа? Есть специальный коэффициент, что отображает положение дел. С его увеличением возрастает нагрузочная способность, которую имеют транзисторные ключи, дестабилизирующие факторы начинают влиять с меньшей силой, но происходит ухудшение быстродействия. Поэтому значение коэффициента насыщения выбирают из компромиссных соображений, ориентируясь по задаче, которую необходимо будет выполнить.

Недостатки ненасыщенного ключа

А что будет, если не было достигнуто оптимальное значение? Тогда появятся такие недостатки:

  1. Напряжение открытого ключа упадёт потеряет примерно до 0,5 В.
  2. Ухудшится помехоустойчивость. Это объясняется возросшим входным сопротивлением, что наблюдается в ключах, когда они в открытом состоянии. Поэтому помехи вроде скачков напряжения будут приводить и к изменению параметров транзисторов.
  3. Насыщенный ключ обладает значительной температурной стабильностью.

Как видите, данный процесс всё же лучше проводить, чтобы в конечном итоге получить более совершенное устройство.

Быстродействие

Для этого используются элементы связи. Так, если первый ключ на выходе имеет высокий уровень напряжения, то на входе второго происходит открытие и работает в заданном режиме. И наоборот. Такая цепь связи существенно влияет на переходные процессы, что возникают во время переключения и быстродействия ключей. Вот как работает транзисторный ключ. Наиболее распространёнными являются схемы, в которых взаимодействие совершается только между двумя транзисторами. Но это вовсе не значит, что это нельзя сделать устройством, в котором будет применяться три, четыре или даже большее число элементов. Но на практике такому сложно бывает найти применение, поэтому работа транзисторного ключа такого типа и не используется.

Что выбрать

С чем лучше работать? Давайте представим, что у нас есть простой транзисторный ключ, напряжение питания которого составляет 0,5 В. Тогда с использованием осциллографа можно будет зафиксировать все изменения. Если ток коллектора выставить в размере 0,5мА, то напряжение упадёт на 40 мВ (на базе будет примерно 0,8 В). По меркам задачи можно сказать, что это довольно значительное отклонение, которое накладывает ограничение на использование в целых рядах схем, к примеру, в коммутаторах Поэтому в них применяются специальные где есть управляющий р-n-переход. Их преимущества над биполярными собратьями такие:

  1. Незначительное значение остаточного напряжения на ключе в состоянии проводки.
  2. Высокое сопротивление и, как результат - малый ток, что протекает по закрытому элементу.
  3. Потребляется малая мощность, поэтому не нужен значительный источник управляющего напряжения.
  4. Можно коммутировать электрические сигналы низкого уровня, которые составляют единицы микровольт.

Транзисторный ключ реле - вот идеальное применение для полевых. Конечно, это сообщение здесь размещено исключительно для того, чтобы читатели имели представление об их применении. Немного знаний и смекалки - и возможностей реализаций, в которых есть транзисторные ключи, будет придумано великое множество.

Пример работы

Давайте рассмотрим более детально, как функционирует простой транзисторный ключ. Коммутируемый сигнал передаётся с одного входа и снимается с другого выхода. Чтобы запереть ключ, на затвор транзистора используют подачу напряжения, которое превышает значения истока и стока на величину, большую в 2-3 В. Но при этом следует соблюдать осторожность и не выходить за пределы допустимого диапазона. Когда ключ закрыт, то его сопротивление относительно большое - превышает 10 Ом. Такое значение получается благодаря тому, что дополнительно влияет ещё и ток обратного смещения p-n перехода. В этом же состоянии емкость между цепью переключаемого сигнала и управляющим электродом колеблется в диапазоне 3-30 пФ. А теперь откроем транзисторный ключ. Схема и практика покажут, что тогда напряжение управляющего электрода будет близиться к нулю, и сильно зависит от сопротивления нагрузки и коммутируемой характеристики напряжения. Это обусловлено целой системой взаимодействий затвора, стока и истока транзистора. Это создаёт определённые проблемы для работы в режиме прерывателя.

В качестве решения данной проблемы были разработаны различные схемы, которые обеспечивают стабилизацию напряжения, что протекает между каналом и затвором. Причем благодаря физическим свойствам в таком качестве может использоваться даже диод. Для этого его следует включить в прямое направление запирающего напряжения. Если будет создаваться необходимая ситуация, то диод закроется, а р-n-переход откроется. Чтобы при изменении коммутируемого напряжения он оставался открытым, и сопротивление его канала не менялось, между истоком и входом ключа можно включить высокоомный резистор. А наличие конденсатора значительно ускорит процесс перезарядки емкостей.

Расчет транзисторного ключа

Для понимания привожу пример расчета, можете подставить свои данные:

1) Коллектор-эмиттер - 45 В. Общая рассеиваемая мощность - 500 mw. Коллектор-эмиттер - 0,2 В. Граничная частота работы - 100 мГц. База-эмиттер - 0,9 В. Коллекторный ток - 100 мА. Статистический коэффициент передачи тока - 200.

2) Резистор для тока 60 мА: 5-1,35-0,2 = 3,45.

3) Номинал сопротивления коллектора: 3,45\0,06=57,5 Ом.

4) Для удобства берём номинал в 62 Ом: 3,45\62=0,0556 мА.

5) Считаем ток базы: 56\200=0,28 мА (0,00028 А).

6) Сколько будет на резисторе базы: 5 - 0,9 = 4,1В.

7) Определяем базы: 4,1\0,00028 = 14,642,9 Ом.

Заключение

И напоследок про название "электронные ключи". Дело в том, что состояние меняется под действием тока. А что он собой представляет? Верно, совокупность электронных зарядов. От этого и происходит второе название. Вот в целом и все. Как видите, принцип работы и схема устройства транзисторных ключей не является чем-то сложным, поэтому разобраться в этом - дело посильное. Следует заметить, что даже автору данной статьи для освежения собственной памяти потребовалось немного попользоваться справочной литературой. Поэтому при возникновении вопросов к терминологии предлагаю вспомнить о наличии технических словарей и проводить поиск новой информации про транзисторные ключи именно там.

Детский Электромобиль своими руками Бессонова
(информация предоставлена автором Бессоновым Вячеславом Федоровичем)
Статья: Токмаков Н.М.

Довольно рациональный детский электромобиль создал Вячеслав Бессонов, 58 лет из Московской области.

Основой является рама из труб прямоугольного сечения 40х25 мм. Колеса 250 мм. от садовой тележки. Задняя ось калиброванный пруток 20 мм вращается в подшиниках 204. Передний мост самодельный по материалам "Моделист-конструктор" статья "Пионер"- карт для начинающих. Трапеция сделана из элементов дверного доводчика. Рулевая колонка весьма оригинальна.Для задних фонарей использованы блоки от грузовых автомобилей, несколько обрезанные по длине.


Рулевая колонка сделана из трубы диаметром 18 мм и с двух сторон приварены шпильки с резьбой диаметром 12 мм. Опора для рулевой колонки является гайка приваренная к уголку, который на болтах прикреплен к передней балке. Гайка с одной стороны позволяет легко крутится в ней рулевой колонке, а с другой удерживает колонку от вертикального перемещения. Небольшое перемещение рулевой колонки на одну нитку резьбы не влияет на рулевой механизм.

Двигателем является блок из трех электродвигателей постоянного тока с возбуждением от постоянных магнитов. Электродвигатели предназначены для охлаждения радиатора Газели или Волги, с током 30 ампер, напряжение 12 вольт каждый. Общая мощность составляет порядка 750-1000 Вт. Были испробованы разные схемы соединения двигателей. Каждый вариант был связан с потерей мощности. Соединение валов электродвигателей в один вал решило проблему потери мощности.

В двух моторах на задних крышках по центру просверливались отверстия. В задних выступы осей этих моторов по центру сделаны резаком (болгаркой) прорези на глубину порядка 5-7 мм. На этот хвостовик первого мотора надевалась трубка внутри которой располагалась пластина входящая в прорезь. Также на второй конец трубки с пластиной насаживался второй мотор и сами моторы фиксировались 8 мм гайками на основании состоящей из 3 осей. Третий мотор устанавливался лицом к лицу к второму мотору через надетую на валы трубку и зафиксированной шпильками из пружинного провода. И также посредством гаек достигалась соосность валов моторов. В результате получился двигатель состоящий из трех моторов соединенных между собой. Посредством велосипедной цепи крутящийся момент с понижением оборотов примерно в 3 раза передается на велосипедную втулку SHIMANO Nexus Inter 8 (Inter 8 Rоллер)Шимано. Затем также цепью передается вращение на заднее левое колесо. На втулке Шимано вместо роллерного тормоза установлена маленькая звездочка и передача осуществляется на ведомую звездочку установленную непосредственно на задней оси электромобиля. Ведущее колесо одно, но этого достаточно для езды по асфальтовым дорогам.. Для натяжения цепей, втулка размещена на уголках с прорезями и натяжным винтом.



Требует пояснения что такое втулка Shimano. Это велосипедная втулка заднего колеса велосипеда со встроенным переключателем скоростей. Переключение осуществляется рычогом-шифтером, аналогично тому как это делается на старых спортивных велосипедах, т.е. с помощью тросика.

Дисковый тормоз сделан из колодок от ВАЗ, но только на ведущее колесо.



Пока нет задней скорости, так как во втулке Шимано стоит обгонная муфта и не решен пока вопрос о ее блокировании. Тормоз на одно заднее колесо не очень эффективен при экстренном торможении.

Управление двигателем осуществляется посредством переделанного блока Мастер Кит NM4511.
На рисунке оригинальный блок до переделки. Установлено 4 спаренных выходных полевых транзистора. Выходные транзисторы установлены на радиаторе процессора с вентилятором охлаждения. В качестве переменного сопротивления управления газом использовался спаренный блок сопротивлений по 100 ком. Поворот стержня сопротивления осуществляется леской, намотанной на специальный шкив. Весь механизм установлен в моторном отсеке. Передача усилия с педали осуществляется тросом.
Для движения задним ходом используются 4 реле (Rel1, Rel2, Rel3, Rel4) меняющие полярность подключения двигателя. Реле подключены попарно параллельно. Это связано с переключением больших токовых нагрузок и с этой целью реле включены параллельно. При отказе от задней скорости можно не применять указанные реле. Однако в настоящее время задняя скорость отсутствует, так как во втулке Шимано стоит обгонная муфта и пока не решен вопрос о ее блокировании.
Подключение каждого мотора осуществляется через реле(Rel5, Rel6, Rel7). Реле второго и третьего мотора включаются через тумблеры, позволяющие электромобилю работать на 1, на 2 и на 3 моторах. Это, на мой взгляд, продиктовано следующим. Автомобильчик рассчитан на разных категорий водителей, поэтому для начинающих включается один мотор, потом два и три. Реле R8/1 и R8/2 включаются при полностью нажатом газе и напрямую подключают питание аккумуляторов на двигатель, минуя электронный регулятор. Это позволяет частично снять нагрузку на выходные транзисторы при большом токе.


Для управления переключением скоростей применен Шифтер SHIMANO (ДисплэйБрэйк) одноходовой TAP FIRE с аналоговым дисплеем. Переключается кнопками под большой палец. Переключатель установлен под рулем электромобиля. Кстати, руль самодельный из 188 мм трубы, одет резиновый шланг и обмотан изолентой.



Электромобиль построен для использования одного или двух соединенных в параллель автомобильных аккумулятора. Оптимально планируется использовать морские аккумуляторы глубокого разряда. Несколько слов о педалях: На первом варианте этой машины педаль тормоза была сделана как на промышленных картингах под левую ногу. Практика эксплуатации предыдущего электромобиля показала, что дети начинают тормозить левой ногой не отпуская правую с педали газа, что приводит к перегрузкам двигателя и потере энергии. В настоящем варианте электромобиле педаль тормоза установлена как и в настоящих, больших автомобилях. И педаль тормоза, и педаль газа установлены под правую ногу, чтобы дети могли уже на этой стадии привыкать к правильному расположению педалей. В дальнейшем им эти навыки пригодятся. При отпускании педали газа двигатели обесточиваются



Электромобиль прошел реальный испытание. Основными испытателями были внуки Вячеслава Федоровича- Антон и Ярослав. Вес порядка 32 кг. Летает вокруг дома уже на 6 скорости. На первой ездит с дедом (88 кг) плюс на багажнике еще два внука (32 кг + 20 кг). Правда идет приличный разряд аккумуляторов. Скорость электромобиля рассчитывалась от 10 до 30 км в час. Спидометр пока еще не устанавливал. На низких скоростях, если резко газ в пол, то даже буксует ведущее колесо. Переключение передач четкое, но старались при переключении сбрасывать газ.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png