НЕФОРМАЛЫ

Многие из нас, наверное, знают, что двигатель внутреннего сгорания, был изобретен достаточно давно, дело это было аж в позапрошлом веке. За время прошедшее с того момента было предложено множество оригинальных конструкторских решений, казалось бы, способных перевернуть все понятия двигателестроения. Переворота все же не произошло, и наш хороший знакомый - кривошипно-шатунный поршневой двигатель не спеша, завоевал весь мир. Однако о неформалах мира двигателей поговорить все-таки стоит.

Роторно-волновой двигатель

Одну из оригинальных конструкций двигателя внутреннего сгорания предложили наши соотечественники. Конструкция эта достаточно не обычна и называется - роторно-волновой двигатель. Давайте сперва разберемся, из каких элементов эта хитрая конструкция состоит и как она работает, а потом поговорим обо всех преимуществах и недостатках.

Конструкция

Основой для двигателя служит корпус(1), достаточно не обычной формы, на внутренних поверхностях которого выполнены специальные винтовые каналы. Внутри корпуса находится полый ротор(2), имеющий на своей поверхности такие же винтовые каналы. Пустотелый ротор и вал отбора мощности(3), соединены между собой с помощью шарнира равных угловых скоростей (ШРУСа)(4). Обратите внимание, что в правой части полого ротора находится механизм, состоящий из блока шестерен(5) и эксцентрика (6). Благодаря нему ротор имеет возможность совершать обкатывание по винтовой поверхности корпуса. Весь же двигатель условно делится на три основные части: компрессорный отсек(А), камера сгорания(Б) и расширительный отсек(В).

Как работает роторно-волновой двигатель?

От конструкции двигателя плавно переходим к рассмотрению рабочего процесса Двухгипотрохоидного РВД, где двухзаходный корпус работает в совокупности с однозаходным ротором, а заключается он в следующем. Как только вал отбора мощности начинает совершать вращательные движения в полости, находящиеся между винтовыми каналами ротора и корпуса, в компрессорном отсеке, начинает засасываться воздух. Так как мы рассматриваем совместную работу двухзаходного корпуса и однозаходного ротора, то за один оборот вала отбора мощности в комперссорный отсек будет попадать две порции воздуха.

После того как воздух был захвачен и отсечен от окружающей среды, он направляется по винтовому каналу в камеру сгорания, испытывая всестороннее сжатие. Туда могут быть добавлены дизельные присадки . Это обусловлено тем, что высота винтовых каналов ротора и корпуса уменьшается, приближаясь к камере сгорания. После того как воздух прошел стадию сжатия он поступает непосредственно в камеру сгоранию, одновременно с этим происходит впрыск топлива.

Для поджигания горючей смеси в камере сгорания предусмотрена свеча, правда, она необходима только для первого воспламенения. Так как в дальнейшем сжигание смеси будет происходить только за счет горячих газов, оставшихся в камере сгорания. После того как произошло превращения топливной смеси в горячий газ, последний направляется в винтовые каналы расширительного отсека, имея в своем арсенале огромное давление и температуру.

Расширительная камера представляет собой полную противоположность компрессорной камере - высота каналов по ходу движения газов у нее только увеличивается. За счет этого и происходит полезная работа, так как, расширяясь, газы, заставляют вращаться ротор. Правда часть полученной мощности теряется при сжатии очередной порции воздуха необходимой для "огненного сердца".

Достоинства роторно-волнового двигателя

Следует сказать о том, что выше мы рассмотрели наиболее упрощенную конструкцию роторно-волнового двигателя. Существуют двигатели такого типа с пятизаходным корпусом и четырехзаходным ротором. Причем такие многозаходные конструкции могут играть роль редукторов, так как при четырех обкатываниях ротора по винтовой поверхности корпуса выходной вал совершит только один полный оборот. То есть сам двигатель позволяет поднять крутящий момент в четыре раза, что согласитесь не так уж и мало.

Еще одно преимущество двигателя скрывается в минимальном количестве пар трения. Фактически трение присутствует только в подшипниках, на которых закреплен вал отбора мощности да в ШРУСе. А как же потери связанные с тем, что ротор обкатывается по корпусу, спросите вы? Эти потери просто отсутствуют, волны ротора "расходятся" на минимально возможном расстоянии с волнами корпуса. К достоинствам следует отнести и малую массу такого типа двигателей. Ведь посмотрев на схему, вы не обнаружите ни газораспределительного механизма, ни тяжелого маховика, ни коленчатого вала. Так как ротор сам по себе является простейшим газораспределительным механизмом, а маховик роторно-волновому двигателю не нужен, потому что в нем просто-напросто отсутствует знакопеременное движение. Благодаря малому количеству деталей и их небольшой массе роторно-волновой двигатель способен развивать обороты в диапазоне от 3000 до 30000 об/мин.

О всеядности этого двигателя поговорить следует отдельно. Ведь в принципе высокооктановое топливо роторно-волновому двигателю необходимо только в момент запуска, как только камера сгорания прогреется, то в нее можно фактически подавать любую горючую жидкость, главное чтобы в процессе горения выделялись горячие газы необходимые для вращения ротора.

Недостаток роторно-волнового двигателя

У этого типа двигателей есть один существенный минус, который в принципе и мешает его мировому распространению - это высокая технологичность, а соответственно и еще большая себестоимость готовой продукции. Так что большое количество плюсов перекрывается одним жирным минусом.

Бесшатунный поршневой двигатель

Идея создания бесшатунного поршневого двигателя родилась в нашей стране достаточно давно. События происходили на рубеже трицатых-сороковых годов в конструкторском бюро, где занимались вопросами разработки и постройки авиационных двигателей. Один из конструкторов этого закрытого предприятия предложил тогда отойти от привычной для нас схемы двигателя внутреннего сгорания, где поршень и коленчатый вал соединены между собой с помощью шатуна. Конструктором этим был С. Баландин, а разработал он новый тип двигателя внутреннего сгорания - бесшатунный ДВС, который позже назвали двигателем Баландина.

Как работает бесшатунный поршневой двигатель?

Для того чтобы понять, как работает это чудо инженерной мысли, сперва взгляните на рисунок. Двигатель состоит из следующих частей: 1,2,3,4 - поршни, 5,6 - подшипники, 7,8 - консольные валы, с опорами для коленчатого вала, 9,10,11,12 - шестерни механизма синхронизации, 13 - коленчатый вал, 14,15 - ползун, 16 - вал отбора мощности.

Теперь давайте посмотрим, как все эти составные части взаимосвязано работают. Итак, представьте, что в камеру сгорания первого цилиндра попадает топливно-воздушная смесь, сначала происходит ее постепенное сжатие, а за тем возгорание. Резко возросшее давление горячих газов заставляет перемещаться поршень 1 и жестко связанный с ним ползун 14 вниз. Зародившееся движения сразу же выводит из состояния покоя коленчатый вал 13, так как все возрастающее давления со стороны ползуна заставляет его вращаться вокруг опор, которые расположены на консольных валах 7 и 8. В свою очередь достаточно сложное планетарное вращения коленчатого вала 13, моментально заставляет совершать вращательные движения и консольные валы 7,8. В результате этих хитросплетений взаимных перемещений, возникает крутящий момент, который через синхронизирующие шестерни 9,10,11,12 передается на вал отбора мощности 16.

Конструкция, рассмотренная нами выше, по теории Баландина должна была иметь высокий механический КПД равный приблизительно 94-м процентам, в то время как обычный, то есть шатунный двигатель внутреннего сгорания мог похвастаться только 85-и процентным КПД. Кроме высокого КПД двигатель должен был обладать следующими ниже преимуществами. Во-первых, это уменьшение нагрузки на поршни, так как в отличие от шатунного двигателя, они во время движения не перекашивются, вследствие чего и отсутствует трение поршня о стенку цилиндра. Во-вторых, есть возможность использования подпоршневого объема для нагнетания воздуха, либо для организации рабочего процесса. В-третьих, существует возможность отказа от маховика, так как поршни и ползуны обладают достаточной массой, а значит и инерционностью.

Казалось бы, сколько много у этого двигателя преимуществ по сравнению с шатунным, но почему же он до сих пор не был запущен в серийное производство? А дело все в следующем. Проблемы с этой конструкцией начались почти сразу же после постройки первых прототипов. Они категорически сопротивлялись работать, "первенцев" заклинивало практически после первых оборотов коленчатого вала. Но после того как эта проблема была решена, дело тогда было в задире поршней, начались новые неприятности - двигатель отказывался нарабатывать положенный моторесурс. На сей раз, виной всему стал чрезвычайно сильный износ направляющих ползунов. Тогда же столкнулись и с трудностью подачи смазки к ползунам и их направляющим.

Множество проблем связанных с доводкой двигателя привели к тому, что большое число конструкторов первоначально подхвативших идею Баландина, отказались от дальнейших работ в этой области. Да плюс ко всему прочему двигатель был очень сложен с технологической точки зрения. Так как в моторе использовалось множество взаимосвязанных элементов, то и допуски на размеры этих деталей должны были быть минимальны, а иначе работоспособность двигателя была бы под большим вопросом. Следует так же сказать, что большинство моторостроительных предприятий в нашей стране не могло похвастаться высокоточным оборудованием необходимым для производства бесшатунных двигателей. Но если даже представить, что производство этих необычных агрегатов и было бы освоено, то цифры их себестоимости удивляли, я думаю, не меньше чем конструкторские решения.

Двигатель Кушуля

В современном мире стало модно быть, экологически чистым. Буквально все твердят об экологической чистоте. Первым делом этот вопрос сказался на автомобильном транспорте, не даром большинство современных автомобилей соответствуют нормам Евро 4. Даже в нашей природа не любивой стране были введены нормы Евро 2. Деньги на совершенствование экологической безопасности автомобилей тратятся огромные, они идут на совершенствование систем впрыска, разработку новейших нейтрализаторов, а так же производство новейших видов топлива. Обо всем выше сказанном знают, наверное, многие, а вот о том, что разработкой экологически чистого двигателя в 60-х годах прошлого столетия занимался профессор Кущуль работающий в Ленинградском институте авиационного приборостроения, знают единицы.

Двигатель, построенный профессором при первом взгляде, напоминал обычный 6-ти цилиндровый V образный двигатель с малым углом развала цилиндров. Но это только при первом взгляде. На самом деле были и кардинальные отличия. Двигатель состоял: из хорошо знакомых нам поршней 1,2, шатунов не стандартной конструкции - 3,4, маховика - 5, блока цилиндров 6. Отличительной особенностью данного двигателя было перепускное окно 7, соединяющее между собой параллельные цилиндры.

Для того чтобы понять все достоинства и недостатки двигателя Кушуля давайте рассмотрим его рабочий процесс. Впуск - поршни, как и на "обычном" двигателе идут вниз, но вся разница в том, что один цилиндр "питается" сильно переобогащенной топливно-воздушной смесью, а второму перепадает только чистый воздух и ни грамма топлива. Сжатие - поршни идут вверх, сжимая находящееся внутри цилиндров "добро". Причем поршни идут с небольшой разницей, первый впереди второго на 20-30 градусов. То есть когда в первом цилиндре происходит зажигание топливно-воздушной смеси, поршень 2 находится в 30-40 градусах от в.м.т.. Рабочий ход - поршень 1 начинает движение вниз под действием расширяющихся газов, в то время как поршень 2 еще продолжает свое движение вверх и сжимает находящийся в цилиндре воздух. Через некоторое время поршни выстроятся "в линию", и давление над поршнями 1 и 2 будет иметь примерно одинаковое значение. Но рабочий ход продолжается и поршень 1 движется вниз, давление горячих газов над ним при этом уменьшается, а поршень 2 все еще продолжает двигаться вверх и сжимать находящийся в цилиндре воздух. Из-за большой разницы давлений, воздух, находящийся во втором цилиндре начинает перетекать в первый через перепускное окно с огромной скоростью. Новая порция воздуха позволяет полностью сгореть топливу, попавшему в первый цилиндр. После того как поршень 2 прошел в.м.т. в нем так же начинается рабочий ход. Горячие газы в этот момент времени одновременно воздействуют на два поршня сразу. Выпуск - открываются выпускные клапаны, оба поршня идут вверх, выбрасывая в атмосферу продукты сгорания, все как у обычного двигателя, но с одной оговоркой. Процесс выпуска у двигателя Кушуля не очень то и громогласен, виной всему низкое давление отработанных газов - топливо попало в один цилиндр, а расширение горячих газов произошло в двух. Кстати говоря, здесь прослеживается и еще одно достоинство этого двигателя - достаточно высокий КПД, так как энергия горячих газов максимально возможно использована в недрах мотора, а выброс отработанных газов происходит при относительно низком давлении и температуре.

Главный козырь этого двигателя, ради чего он в принципе и создавался, низкий выброс вредных веществ, благодаря наиболее полному сгоранию топлива. К преимуществам можно так же отнести возможность работы на различных видах топлива и экономичность.

Как всегда не обошлось и без ложки дегтя. Все недостатки "вылезли" в процессе ходовых испытаний построенного Кушулем двигателя, который был имплантирован в "тело" легендарной "Волги". Недостатков было не много, но они были достаточно существенны. Первое - большая масса агрегата, с ней пытались бороться, применяя облегченные детали, но срок их службы бал значительно меньше чем у массивных. Второе - несбалансированная работа двигателя, так как в каждый момент времени работало по два цилиндра, то двигатель был аналогичен трехцилиндровому мотору. Балансионный вал в конструкции этого двигателя предусмотрен не был, хотя сейчас практически все трехцилиндровые двигатели работают в паре с "балансиром".

Как и в других случаях, конструкция этого двигателя не "пошла" по технологическим причинам. Обычный двигатель был намного проще в производстве, чем двигатель Кушуля. А как все тогда хорошо начиналось.

Роторно-поршневой дизель

О роторно-поршневых двигателях Ванкеля я думаю, слышали многие. Свою известность в нашей стране этот тип двигателей получил, благодаря двум автомобильным компаниям - это "ВАЗ" и "Mazda". Хотя двигать первой фирмы является, честно говоря, копией двигателя второй. "Mazda" безусловно пролила много пота и крови доводя конструкцию роторно-поршневого двигателя до совершенства, и ей, следует сказать, это удалось сделать. Хотя если заглянуть в историю, то в роторно-поршневом буме, который был примерно сорок лет назад, поучаствовали, наверное, все компании, которые хоть как-то были связаны с разработкой двигателей. В этот период было сделано очень много интересных роторно-поршневых двигателей. Об одном из них мы с вами и поговорим - это роторно-поршневой дизельный двигатель, сконструированный знаменитой компанией "Роллс-Ройс".

На рисунке показан двухступенчатый роторно-поршневой дизель "Роллс-Ройс". Основой для двигателя служил корпус 8 в котором находилось две рабочие полости. В полости 3 был расположен ротор ступени высокого давления 5, а в полости 1 - ротор ступени низкого давления 7. Кроме того, что роторы имели разный размер, один был меньше другого в три раза, они еще отличались и формой рабочей поверхности - маленький имел специальные выемки, большой же этим похвастаться не мог. Оба ротора синхронно вращались в одном направлении, так как были связанны шестеренчатой передачей. Вал отбора мощности состыковывался с эксцентриковым валом ротора 7. В корпусе имелись две полости - 2,6, которые соединяли между собой ступени высокого и низкого давления, а так же два окна - 9 и 10, соответственно выпускное и впускное. Форсунка 4 находилась в верхней части корпуса и подавала "тяжелое" топливо в ступень высокого давления.

Этот двигатель работал следующим образом. Ротор 7 своей гранью отсекал от окружающей среды порцию воздуха, попавшую в секцию низкого давления через впускное окно 10. Затем воздух перемещался по каналу 2 в секцию высокого давления, испытывая небольшое сжатие, но лишь до того момента пока грань ротора 5 не пересекала перепускной канал. После того как воздух оказался в полости между ротором 5 и корпусом 8 он испытывал сильное всестороннее сжатия и постепенно переносился в рабочую зону форсунки 4. После впрыска топлива в предварительно сжатый воздух, происходило сгорание. Образовавшиеся газы расширялись лишь в секции высокого давления, но только до тех пор, пока грань ротора 5 не открыла доступ к перепускному каналу 6. После этого расширение уже происходило в двух секциях, до того момента пока грань ротора 7 не открывала выпускное окно 9.

Многие из вас наверняка зададутся вопросом: " А для чего необходимо было делать двигатель двухсекционным?" Двухсекционность в первую очередь была необходима, для того чтобы организовать дизельный цикл в роторно-поршневом двигателе. Во-вторых, было в два раза уменьшено давление приходящиеся на эксцентриковые валы роторов, соответственно это дало увеличение ресурса двигателя.

При конструировании этого необычного двигателя компанией "Роллс-Ройс" было решено громадное количество технических задач. Большие проблемы были связаны с подбором идеальной формы выемок выполненных в рабочей поверхности ротора ступени высокого давления. Много времени заняли вопросы, связанные с подшипниками ротора и радиальными уплотнениями. Так как в дизельном двигатели нагрузки на эти элементы намного больше, чем, в двигателе, работающем на бензине.

После того как двигатель окончательно был доведен до ума, фирме "Роллс-Ройс" пришлось сделать трудное для себя решение. А именно - закрыть этот проект. Так как двигатель хоть и радовал своими положительными чертами, сюда можно отнести все плюсы дизельных двигателей и прибавить компактность Р.П.Д., но был достаточно сложен в производстве, имел высокую себестоимость и что самое важное малый ресурс.

Максим УТЕШЕВ


Статья взята с третьих рук, но исходно с Эксперта: http://expert.ru/expert/2016/49/dvigatel-energorevolyutsii/

Двигатель внутреннего сгорания (ДВС) с механическим КПД 95% практически не имеет вредных выхлопных газов и способен при расходе топлива три литра на 100 км развивать мощность 300 л. с. А общий КПД чудо-двигателя, работающего на бензине, составляет порядка 60%. Это кажется невероятным, ведь КПД массовых автомобильных бензиновых ДВС не превышает 25%, дизельных - 40%. Этот проект - реально работающий прототип, собранный в «подвале» небольшого мебельного завода. Новые технологии, примененные в этом движке, запатентованы в России, США и даже в Японии. Все попытки зарубежных компаний купить эти разработки патриотом-кулибиным были отвергнуты, хотя предлагались суммы, в 20 раз превышающие стоимость всего его бизнеса. Представляется, что этот проект может создать серьезную конкуренцию электромобилю.

Ротор для аммиака и сварочный трансформатор

Создатель двигателя оказался автором более 50 патентов, в том числе международных. Александр Николаевич Сергеев - разработчик оригинальной технологии сварки роторов для производства аммиака, источников питания сварочной дуги, аэродинамических спойлеров для вазовских автомобилей и еще более 50 изделий, до сих пор применяющихся в шести отраслях промышленности. Свой первый патент на изобретение Сергеев получил, еще будучи студентом, в 1970-х, и был удостоен почетного тогда звания «Молодой ученый года», а через три года, поступив на работу инженером на завод «Азотреммаш» (ныне часть холдинга «Тольяттиазот» - крупнейшего в мире производителя азота), произвел технологическую революцию в отрасли. Разработанная им технология сварки рабочих колес центробежных компрессоров позволила увеличить ресурс работы этих агрегатов в несколько раз и отказаться от поставок аналогичных устройств из США.

Мы впервые в мире сделали цельносварной ротор, - объясняет Александр. - Это основной в производстве аммиака узел - узел сжатия газа до давления свыше 300 атмосфер при гиперзвуковых окружных скоростях рабочих колес компрессоров. По теме сварки магнитоуправляемой дугой у меня порядка пятнадцати авторских. Если вкратце, там, по сути, было сделано открытие по влиянию электромагнитного поля на электропроводность и теплопроводность.

Наработки в области сварки, созданные в рамках химпрома, пригодились в других отраслях. Сергеевым был разработан сварочный трансформатор, по своим характеристикам превышающий те, что продавались на рынке, при этом его стоимость была на 30% ниже, а площадь занимаемого пространства сократилось в пять раз. В 1980-х годах изобретатель хотел предложить свои разработки начальству, однако в стране грянула перестройка, началось кооперативное движение; Сергеев ушел с завода и, прихватив с собой костяк своей команды, организовал предприятие, выпускающее промышленное сварочное оборудование.

Я пришел в госбанк, сказал, что мы хотим кооператив организовать. Говорят: напишите бизнес-план. Я рукой на листочке формата А4 накалякал, прямо при них. Шестьдесят тысяч рублей первый кредит мы взяли. Просто девочка приезжала от банка, проверяла целевое использование, - вспоминает ученый.

От спойлеров для ВАЗов до мебели

В 1999 году Сергеев начал разработки в области химии пластиков. Он основал компанию «Техноком», которая, используя его изобретения, создала спойлеры для новых моделей АвтоВАЗа. Если вкратце, то Сергеев придумал, как сделать пенополиуретан прочным и легким - то, что за многие годы по техзаданиям автогиганта не могли осуществить компании, претендующие на контракт с АвтоВАЗом. В результате получился композиционный материал, выдерживающий механические нагрузки на уровне технической пластмассы. На главный конвейер АвтоВАЗа компания за несколько лет поставила свыше миллиона спойлеров. Сергеев защитил проект в венчурном фонде Самарской области, получив финансирование на закупку оборудования, а также посевные инвестиции в целом на 70 млн рублей. Через три года компания «Техноком» начала изготавливать изделия из пенополиуретана для мебельной отрасли - элементы для оформления фасадов зданий под торговой маркой Modus Decor. Сегодня «Техноком» входит в тройку лидеров этого рынка, в котором, кстати, до прихода тольяттинцев практически безраздельно царил импорт. На вопрос, доволен ли Сергеев своим мебельным бизнесом, я получил неожиданный ответ: «Этот бизнес я запустил только для того, чтобы заработать денег для настоящего дела моей жизни - создания двигателя внутреннего сгорания, работающего на новых принципах». В «подвале» Modus Decor Сергеев уже много лет занимается разработкой нового двигателя, а в этом году построил работающий прототип.

Двигатель мечты

Передо мной был с виду обычный ДВС - двигатель внутреннего сгорания, которые применяются в транспортных средствах, малой энергетике, малой авиации и много где еще. Странным было только то, что, во-первых, он был двухтактным, а во-вторых, никакой дроссельной заслонки в нем я не обнаружил. Движок был подключен к стандартному промышленному газоанализатору, позволяющему с точностью до сотых долей определять состав выхлопных газов и их количественные характеристики - СО, СО2, CH, О2, а также коэффициент избытка воздуха λ - так называемая лямбда. Сергеев запустил двигатель (на бензине), который начал издавать вполне узнаваемые звуки работающего поршневого механизма, а вот газоанализатор стал показывать странные вещи - состав выхлопных газов мало чем отличался от состава обычного воздуха (кроме мизерного количества углеводородов): СО - 0,1%, СО2 - 3%, СН - 250 единиц, и О2 - 18%. Здесь стоит напомнить, что в воздухе, которым мы дышим, кислорода как раз 18% (от 17 до 21%, если быть точным). А в выхлопе даже самых дорогих четырехтактных двигателей самого высокого экологического стандарта содержание газов такое: СО - 0,5%, СО2 - 15%, СН - 220 единиц (без каталитического нейтрализатора), О2 - 0,5%. Лямбда (λ) в новом движке - 2÷5.

Вот смотри, нет дроссельной заслонки, но это двухтактный цикл. Один цилиндр крутит четырехцилиндровую кинематическую схему, - показывает Сергеев на детали движка, наслаждаясь произведенным на меня эффектом. - Вот сейчас закрываю впускной коллектор. Это как бы дроссельная заслонка. Это чтобы показать, что газоанализатор нормально работает. Для специалистов это сразу понятно. Сейчас лямбда начнет появляться. Вот лямбда равна 1,43 - значит, прибор работает. Вот сейчас кислорода меньше и уже тащится СН, тысяча с лишним. Вот открыли, с полным наполнением начал работать. Все: кислород растет, СО падает, СО2 падает. Когда приходят спецы, которые понимают в теме, они просто не верят. Двигатель работает практически на воздухе.

Двигатель из «подвала» тольяттинского мебельщика вовсе не загрязняет атмосферу. При этом расход топлива у него получается каким-то фантастически низким: 2,7–3 л на 100 км при развиваемой мощности 300 л. с. По мощности это ДВС, стоящий, например, в «Инфинити», который жрет минимум 14 л на 100 км. Обеспечиваются такие параметры за счет того, что в камере сгорания топливовоздушная смесь сгорает полностью. А вот как это достигается? Во-первых, двигатель сконструирован по схеме бесшатунного механизма, который инженер Сергей Баландин придумал еще в годы Второй мировой войны. Сталинский ученый не успел завершить свои разработки, так как появилась турбореактивная тяга, а его идеи поршневого ДВС так и не были воплощены в жизнь. Тем не менее интерес к этой схеме среди изобретателей остался. У Баландина было много последователей, но дальше всех в промышленном применении продвинулсяАлексей Вуль . Сергеев же сумел развить технологию до эффективно работающего прототипа и добиться результата. Кроме того, в движке Сергеева использованы изобретенные им принципиально новые способы смесеобразования и сжигания топлива.

Все гениальное просто

Чем интересна схема Баландина? При работе этого двигателя нет бокового давления поршней на стенки цилиндра, - рассказывает Александр Сергеев. - За счет этого механический КПД повышается до 95 процентов. Второе: там можно увеличить линейную скорость поршня. Значит, можно увеличить мощность. До сих пор эту кинематическую схему никто не реализовал в промышленных объемах.

Десять лет назад Сергеев задался вопросом: вот есть древнее устройство, существующее «тысячу лет», - примус. В нем топливо сжигается практически на сто процентов, и никто не угорает. Почему? Потому что в примусе керосин сначала испаряется, переходит из жидкой фазы в газовую и только потом горит. Чтобы сгореть, топливо должно пройти подготовку к химической реакции горения - перейти из жидкой фазы в газовую. Раньше в ДВС был карбюратор, где смесь готовилась. Но все равно это была жидкая фаза. Сейчас сделали непосредственный впрыск, когда форсунки высокого давления впрыскивают топливо прямо в рабочий цилиндр. Однако тоже в жидкой фазе. Иначе в двигателе Сергеева: после газификации топливовоздушной смеси гомогенная смесь поступает в камеру сгорания новой геометрии с глубоким расслоением заряда по плотности. Это обеспечивает концентрацию богатой топливовоздушной смеси в районе электродов свечи зажигания, что обеспечивает ее уверенное поджигание, а после воспламенения смеси сгорает бедная топливовоздушная смесь, обеспечивая практически полное сжигание с минимальной токсичностью отработанных газов. Объединение преимуществ бензиновых и дизельных двигателей, а также бесшатунной кинематической схемы позволило создать поршневой двигатель с фантастическими характеристиками.

«Особое мнение» АвтоВАЗа и «Ростеха»- Я посмотрел, что в мире за последнее время сделали. Американцы придумали поджигать бензин керосином. Гибриды. Но здесь надо еще посмотреть, какая экология при производстве аккумуляторных батарей. А потом - как это все утилизировать. Где эти зарядные станции ставить? И все равно нужен бензиновый двигатель, который будет крутить этот генератор, - справедливо рассуждает ученый.

Свои изобретения наш тольяттинский Кулибин запатентовал, причем не только в России, но и в США и даже в Японии (получить патент в Японии невероятно сложно, об этом знают все технические специалисты в мире). После публикации в федеральном журнале патентов США (обязательная процедура) этот патент был избран из 28 тысяч в сотню «самых интересных», и статью о новых технологиях Сергеева с заголовком «Новое рождение ДВС» напечатал авторитетный американский журнал Science. Сразу после выхода публикации в свет, буквально на следующий день, Сергееву посыпались письма от американских производственных компаний и венчурных фондов; запросы о продаже технологии пришли в том числе от оборонных предприятий, связанных с гигантами Lockheed Martin и DARPA. Большинство предлагали оплатить прилет нашего ученого в Штаты и там провести переговоры, не называя цену, а некоторые сразу шли ва-банк и сумму сделки называли. Самая большая сумма, обозначенная в этих письмах (копии есть в распоряжении «Эксперта»), - 220 млн долларов. Учитывая, что совокупная стоимость всех активов изобретателя не превышает и 10 млн долларов, предложение более чем привлекательное.

Были предложения о сотрудничестве и от японских корпораций. В одном письме указывается, что в Японии принята частно-государственная программа разработки нового двигателя внутреннего сгорания, в которой целью ставится создание ДВС, которые будут на 30% экономичнее и более экологически чистыми (выход СО2 снизить на 20%, СО - на 35%), чем существующие сегодня. На программу выделено 10 млрд долларов, из которых 50% - финансирование от правительства страны. Поставлена цель к 2020 году выйти на демонстрацию работающего прототипа. Как же они все там были расстроены, когда узнали, что в России уже создали такой прототип, причем с характеристиками на порядок выше тех, что заложены в их амбициозной программе. Однако выстроившиеся в очередь покупатели из разных стран все как один получили отказ, а сам Сергеев твердо решил остаться истинным патриотом, найти российских инвесторов.

А вот на АвтоВАЗе - главном предприятии, которое могло бы внедрить разработки в области ДВС, когда Сергеев показал документы и видео своего движка, просто отмахнулись.

Еще в 2009 году главный конструктор ВАЗа Петр Михайлович Прусов хотел созвать всероссийскую конференцию по двигателестроению, чтобы я сделал доклад. Но тогда на завод приехали москвичи с французами, власть тут начала меняться, и все это похерилось. Я показал данные и видео нынешнему руководству завода, но они сказали, что этого не может быть. Они думали, что это фальсификация, - удивляется Сергеев.

В «Ростехе», куда я обратился за комментарием, полтора месяца просто «кормили завтраками». Затем оттуда пришел ответ, но корпорация даже не связалась с Сергеевым. «Макет одноцилиндрового двухтактного двигателя внутреннего сгорания разработки А. Н. Сергеева не применим для продукции Госкорпорации “Ростех”: ОДК занимается разработкой и созданием авиационных, ракетных и газоперекачивающих двигателей. Для беспилотников производства ОПК и Калашникова используются системы, к которым данный двигатель не применим. Двигатель не подходит и к текущим автомобилям производства АвтоВАЗ. В иной ситуации для автомобилей потребуется серьезная техническая доработка конструкции и управляющих систем, помимо этого не проработаны вопросы экологии в связи с двухтактностью цикла». То есть, переводя на человеческий язык, ответ можно расшифровать так: ОДК - Объединенная двигателестроительная корпорация - несмотря на заявленные в уставе цели и задачи развития всего существующего в промышленности спектра технологий двигателестроения, не хочет браться за новое направление, а переделывать конструкции беспилотников и автомобилей под новый двигатель, на разработку которых «Ростех» уже потратил деньги и время, специалисты госкорпорации считают нецелесообразным. Несмотря на то, что эта простая подгонка под основной узел (двигатель) приведет к настоящей технологической и энергетической революции. Про «вопросы экологии в связи с двухтактностью цикла» я вообще лучше промолчу, ибо здесь доблестный «Ростех» просто «спалился» в том, что его специалисты даже не прочитали присланного мной протокола комиссии Самарского университета.

Из ОДК пришло вообще странное письмо, отражающее чудовищную некомпетентность людей из правления госхолдинга. Цитирую: «Предлагаемые диапазоны мощностей (до 300 л. с.) уже сейчас осваиваются ГМЗ “Агат” совместно с ЦИАМом (Центральный институт авиационного приборостроения им. Баранова. -“Эксперт” ) и ОКБ моторостроения…» Хотя любой студент знает из курса теплотехники, что бесшатунная кинематическая схема (схема Баландина) как раз ценна тем, что не имеет ограничений по увеличению мощности двигателя (от тех же 300 л. с. можно легко прыгнуть до 1000 л. с. и больше, если это необходимо), поскольку из-за отсутствия бокового давления на стенки цилиндра линейную скорость поршня можно увеличивать практически до бесконечности. Дальше специалисты ОДК пишут: «Рынок отечественных ЛА с ДВС очень ограничен, возможно, разовьется в ближайшем будущем, но пока он крайне узок». Логика железная… Если кто-то выпустит на мировой рынок, скажем, беспилотник (или небольшой самолет, использующий поршневой двигатель), который расходует в три-четыре (!) раза меньше топлива, чем существующие современные аналоги, и который, соответственно, может автономно летать в несколько раз дольше, догадайтесь, какой истерически сумасшедший спрос будет на него.

Однако рациональное зерно в ответе ОДК все же нашлось. Специалист компании сообщил, что «существующая редакция “Стратегии развития поршневого двигателестроения” предлагает создание центра компетенции по авиационным поршневым двигателям на базе ЦИАМ»; на мой взгляд, это сейчас правильно, потому что ОДК этим ну совсем некогда, да и не на чем (в смысле базы) заниматься, - поэтому разработчикам есть смысл обратиться именно в ЦИАМ. Теперь стала понятна структура компетенций государства в области развития поршневых двигателей. Но обращение в ЦИАМ оказалось бесполезным. Пресс-секретарь института лишь сообщила: «Документы передала специалистам, может быть, с вами свяжутся…»

Адекватные ученые

Сергеев показал разработки одному из основных научных институтов по теме ДВС в России - кафедре тепловых двигателей Самарского национального исследовательского университета им. С. П. Королева. Ее специалисты приехали на мебельный завод буквально на следующий день после получения письма. Делегацию возглавил академик Российской академии транспорта, член-корреспондент Российской академии космонавтики, доктор технических наук, профессор Владимир Бирюк - ученый с мировым именем, который является главным экспертом Ракетно-космической корпорации «Энергия», Роскосмоса, Минпромторга и т. д. В состав комиссии также вошли главный инженер научного центра газодинамических исследований Игорь Ниппард , инженерАлексей Горшкалев и завлабораторией ДВС Самарского университета, кандидат технических наук Дмитрий Сармин . В интервью «Эксперту» Владимир Бирюк рассказал, что был поражен увиденным в Тольятти, но после проверки всех показателей двигателя никаких сомнений не осталось. Выездная комиссия приняла решение срочно заняться этим проектом в приоритетном порядке.

Протокол совместного совещания гласит: «Обсуждали работу рабочего макета одноцилиндрового, двухтактного двигателя внутреннего сгорания с техническими характеристиками и показателями, превышающими существующие в мировом двигателестроении аналоги. Основным отличием данного двигателя является: принципиально новая схема смесеобразования и сжигания топлива, обеспечивающее практически полное сжигание топлива с коэффициентом избытка воздуха на режимах холостого хода и частичных нагрузках в интервале 3 ≤ λ ≤ 5, что обеспечило значительное снижение расхода топлива на этих режимах и снизило токсичность отработанных газов. СО = 0,1%, СН = 250÷350, СО2 = 3÷5%, О2 = 12÷18%. Новые решения смесеобразования и сжигания топлива защищены патентами РФ, США и Японии. Данный двигатель является многотопливным и может работать в режиме холостого хода и частичных нагрузках в двухтактном цикле с двойной продувкой, снижая расход топлива на этих режимах, и двухтактном цикле на мощностных режимах, что позволяет развить максимальную мощность двигателя. Демонстрация и обсуждение работы одноцилиндровой модели представленного ДВС позволяет принять решение: признать целесообразным создание совместной рабочей группы для дальнейшей разработки и изготовления опытного образца двигателя объемом 2 л, мощностью 250÷300 л. с., с крутящим моментом не менее 300 Н·м и массой не более 150 кг, признать целесообразным разработку опытного образца двигателя мощностью 30–35 л. с. при минимальной массе».

Один из ведущих в мире экспертов по теплофизике профессор кафедры компьютерной теплофизики и энергофизического мониторинга Санкт-Петербургского национального исследовательского университета ИТМО доктор технических наукНиколай Пилипенко не поверил в существование двигателя с механическим КПД 95%. В интервью «Эксперту» он заявил: «Такого просто не может быть. Тут какая-то уловка. Иначе это была бы настоящая мировая сенсация на уровне создания атомной бомбы». Опрошенные нами научные светила в сфере теплофизики, теплотехники и поршневого двигателестроения в других странах тоже лишь усмехались в трубку, указывая на существование в мире тысяч всевозможных «революционных» проектов, начиная с вакуумных поездов и заканчивая ионными или плазменными двигателями, но это все «прожекты на бумаге», которые в реальности нереализуемы ввиду либо конструкционных особенностей, либо отсутствия спроса. Однако после предъявления международных патентных удостоверений люди в основном просили дать координаты изобретателя. Профессор Осакского университета Юкио Сакэ , который уже тридцать лет занимается разработками газодинамических систем двигателей для японских автоконцернов, предложил создать совместное российско-японское предприятие для завершения разработок и организации производства двигателей. А ведущий инженер Центра теплотехнического инжиниринга во Франкфурте-на-Майне (ведет разработки по контракту с BMW и Volkswagen) Габриэль Вайнц удивился, что «проект до сих пор не “проглотил” какой-нибудь предприимчивый инвестор» и пригласил Сергеева в Германию для совместной работы и организации международной конференции. Впрочем, этим инвестором, по логике вещей, должно стать государство, поскольку новые двигатели имеют большой потенциал использования в военной технике и вооружении.

Лед тронулся

Пока же государство в своей чудовищной неповоротливости думает, изобретатель Сергеев уже делает следующие шаги. Теперь он вместе со специалистами Самарского университета формирует команду разработчиков для доведения движка до совершенства, внедрения других разработанных им технологий и создания силовых установок для различных задач - автомобили, беспилотники, малая авиация, малая электрогенерация, корабли и т. д. Готовится документация для 35 новых патентов, позволяющих защитить ноу-хау, которые еще только предстоит реализовать в новом двигателе. Понятно, что денег у университета нет и сегодня проекту срочно требуется стратегический инвестор. Разработками Сергеева уже заинтересовалась РКК «Энергия» и компания - разработчик ударных беспилотников для Минобороны.

Массовое внедрение ДВС с качественно более высоким КПД, безусловно, позволит сделать экономику более энергоэффективной. Вы только вдумайтесь: сегодня более 80% энергии в мире производят двигатели внутреннего сгорания. Электроэнергия будет стоить копейки (можно будет автономно отапливать дом электричеством от мини-электростанции по цене в три раза ниже, чем от магистральных сетей), а сама генерация станет доступной даже в глухой тайге. А автомобили? Представьте себе джип с 300-сильным движком, который расходует лишь три литра горючего на 100 км, или обычную легковушку, буквально «нюхающую» топливо по 0,5 литра на 100 км. При этом заливать в бак можно будет не только бензин определенного октанового числа, а буквально все, что горит: нет поблизости заправки - залил бутылку водки и доехал.

Заявка на сенсацию

Механический КПД предлагаемого двигателя в 95% достигается за счет использования кинематической схемы бесшатунного механизма (механизма Баландина), при которой значительно уменьшаются потери на преодоление сил трения за счет исключения бокового давления поршня на стенки рабочего цилиндра. У лучших ДВС с кривошипно-шатунным механизмом механический КПД остается на уровне 90%.

Топливная эффективность двигателя Александра Сергеева достигает 98% за счет организации нового запатентованного процесса смесеобразования и сжигания топлива, обеспечивающего полное сжигание топлива в рабочем цилиндре.

Термодинамический КПД предлагаемой разработки составляет 60–65% за счет организации работы бензинового двигателя в двухтактном цикле с полным наполнением рабочего цилиндра атмосферным воздухом на всех режимах его работы, при степени сжатия ε = 14÷20 без детонации.

Разработанный двигатель устойчиво работает в двухтактном цикле с двойной продувкой, в режимах холостого хода и частичной нагрузки (основные режимы работы двигателя в городском режиме и движении по трассе, что составляет ≈80÷85% работы ДВС), то есть один ход рабочий, следующий продувочный, что идеально готовит рабочий цилиндр к следующему рабочему циклу. Это позволяет дополнительно уменьшить расход топлива и обеспечить оптимальный температурный режим работы двигателя, что также способствует повышению теплового (термодинамического) КПД двигателя.

Электрическая розетка стала символом прогресса. Стенды большинства автокомпаний на прошедшем в январе Детройтском автосалоне буквально били током, а любое упоминание о старом добром ДВС звучало дурным тоном. Так что же — двигатель внутреннего сгорания с треском накрылся капотом? Не спешите с соболезнованиями. По‑крайней мере там же, в Детройте, представитель Toyota Коеи Сага на вопрос репортеров о том, когда ДВС, наконец, выйдет из игры, простодушно ответил: «Никогда! Когда кончится нефть, человечество будет заправлять его водородом».

Аналитики американского Департамента энергетики DOE считают, что ДВС может попыхтеть еще несколько десятилетий. Причем прирост эффективности бензиновых и дизельных двигателей к 2020 году может составить 30%, а к 2030-му — 50%. Технологии, которые помогут добиться этих результатов, тестируются уже сегодня.

Вездесущее пламя

В далеком 1978 году группа ученых японского института Clean Engine Research, пытавшихся оптимизировать процесс сгорания топлива в двухтактных мотоциклетных моторах, случайно зафиксировала необычный феномен, названный HCCI (Homogeneous charge compression ignition). При достижении определенного давления в камере бензинового двухтактника возгорание топливовоздушного заряда происходило без искры свечи зажигания. Но самое интересное — вместо привычного зажигания смеси около свечи и последующего распространения пламени на периферию в камере одновременно возникало огромное количество микроочагов возгорания. Как следствие, смесь сгорала при более низкой, чем обычно, температуре, очень быстро и практически полностью. Имеющийся в то время математический аппарат и уровень развития термодинамики не позволили понять причины возникновения феномена HCCI, и его посчитали курьезом. Через 20 лет в арсенале инженеров появились мощные средства компьютерного моделирования, которые помогли приоткрыть завесу тайны над HCCI. Работы в этой области в конце 1990-х годов начались в Германии (Mercedes-Benz, Volkswagen), Японии (Nissan) и Америке (General Motors).

Американский инженер Джон Заяц предложил собственную концепцию ДВС, близкую к двигателю с раздельным циклом Scuderi. Изобретатель утверждает, что его двигатель на 15% экономичнее дизеля и на 30% - бензинового аналога по мощности. В двигателе Заяца воздух из цилиндра сжатия попадает в камеру, в которой создается повышенное давление топливной смеси, на 40% больше обычного уровня для бензиновых моторов. Камера, её форма, принцип работы, дизайн и материалы для изготовления защищены 19 патентами. Воздух в ней смешивается с топливом и возгорается. Процесс сгорания смеси по времени намного продолжительней, чем в обычном ДВС. Внутри камеры создается особая среда — «горячая стена», которая является фактически аккумулятором энергии — неизменная температура и давление в ней сохраняются в 10−100 раз дольше, чем в камере сгорания обычного мотора. Затем раскаленные газы через специальный клапан попадают в рабочий цилиндр. Простота, минимимальное количество деталей и эффективность разработки Zajac Motors привлекли пристальное внимание автогигантов. В 2009 году у Заяца появились серьезные партнеры — General Motors и канадская Magna.

Для образования однородного топливовоздушного облака с предельно низкой плотностью в состав смеси вводятся горячие отработанные газы. Они быстро разогревают этот коктейль, облегчая его перемешивание внутри камеры. Если в условиях классического прямого впрыска топливо распыляется в виде аэрозоля, то в HCCI смесь представляет собой мельчайший туман. Когда поршень сжимает смесь до определенного объема, температура подскакивает до точки самовоспламенения. Сгорание HCCI характерно отсутствием открытого пламени и более низкой, чем у дизельных двигателей, температурой. В результате доля сгоревшего топлива вырастает до 95−97% в сравнении с 75% в циклах Отто и Дизеля. Причем на богатых смесях HCCI не работает — ему нужны почти гомеопатические доли топлива, на 30 и более процентов беднее, чем у лучших современных ДВС.

Тем не менее отработанная технология HCCI — пока еще дело будущего. Термодинамика процесса чрезвычайно сложна и требует от ученых решения массы проблем. Главные из них — неустойчивая работа на холостых и максимальных оборотах, неконтролируемая детонация остатков смеси и неравномерность распределения топливовоздушного облака в камере. Правда, в последние месяцы хорошие новости появляются ободряюще регулярно. Специалисты General Motors сообщают, что сумели обуздать стихию на малых оборотах, а британские инженеры из Lotus заявляют, что построили работающий прототип супердвигателя Omnivore, «снизу доверху» поддерживающий процесс HCCI. По мнению вице-президента компании Bosch Хеннинга Шнайдера, автомобили с расходом топлива в пределах 3 л на 100 км, оснащенные ДВС с технологией HCCI, станут серийными уже в 2015 году. У Volkswagen подход более осторожный — компания разрабатывает новый двигатель, работающий с использованием свечей зажигания при полной нагрузке и на холостом ходу, а в среднем диапазоне оборотов — в режиме HCCI. Инженеры Nissan также не стоят на месте — недавно они объявили о создании мощного софта, позволяющего создать компьютерную модель феномена HCCI, и уже начали работать над собственным супердвигателем.


Разделение труда

В пасхальное утро 2001 года инженер Кармело Скудери собрал в своем доме все семейство и торжественно сообщил, что разработал ДВС нового типа, который перевернет мир. Детальное описание технологии поместилось в нескольких рукописных блокнотах — старик не жаловал компьютер и все свои расчеты делал на логарифмической линейке. В 2002 году Кармело, только начав консультации с учеными Университета Саутвест, умер от инфаркта. Дело отца взяли в свои руки дети Скудери, и спустя всего восемь лет действующий прототип двигателя с разделенным циклом (Split-Cycle Combustion SCC) был представлен на Всемирном конгрессе Общества автомобильных инженеров SAE в Детройте. Надо сказать, что концепция разделенного цикла не нова. Еще в 1891 году американская компания Backus Water Motor Company выпускала малыми сериями такие моторы, но они не получили распространения, и идея сто лет пролежала на полке.

В двигателе Отто каждый поршень последовательно совершает такты всасывания, сжатия, рабочего хода и выпуска. В разработке Скудери обязанности по‑братски делятся между парными цилиндрами: один предназначен для впуска и сжатия, другой — для рабочего такта и выпуска отработанных газов. Цилиндры соединяются между собой каналами с клапанным механизмом, по которым сжатая топливовоздушная смесь поступает в рабочий цилиндр. Двигатель Скудери состоит из двух таких пар.

В цикле Отто рабочий ход происходит на каждом втором обороте коленчатого вала, в двигателе Скудери — на каждом. Разделение функций цилиндров позволяет более эффективно использовать каждый из них, например, увеличить ход рабочего поршня и длительность сгорания топлива, не превышая допустимой степени сжатия топлива. Зажигание смеси происходит после того, как рабочий поршень начинает двигаться вниз, в отличие от обычного двигателя с опережением зажигания. Расчеты показывают, что разделение цикла дает гораздо более высокую степень сжатия смеси и быстрое и полное ее сгорание.


В камере сгорания двигателя с системой HCCI (Homogeneous charge compression ignition) одновременно возникает огромное количество микроочагов возгорания. Экологические характеристики HCCI впечатляют. Если процесс сгорания солярки в дизельных двигателях вызывает повышенное образование сажи и окисей азота, то более «холодному» HCCI эти болячки неведомы. По словам Херманна Миддендорфа, руководителя проекта по разработке суперкомпактных бензиновых моторов EA111 компании Volkswagen, агрегаты типа HCCI смогут обойтись без дорогостоящего катализатора.

Сыновья Кармело усовершенствовали конструкцию мотора, добавив к ней баллон со сжатым воздухом. Воздух поступает в рабочий цилиндр, улучшая процесс сгорания смеси. При этом отработанные газы мотора Скудери содержат на 80% меньше углекислого газа и окисей азота, чем у традиционных четырехтактников. КПД мотора Скудери на 5−10% выше, чем у самых продвинутых современных дизельных турбоагрегатов. Добавление наддува увеличивает разрыв по КПД до 25−50%.

В 2008 году двигатель SCC привлек внимание нескольких крупных автопроизводителей, включая PSA Peugeot Сitroёn и Honda, которые подписали со Scuderi Group соглашения о доступе к изучению патентованной технологии. Немецкий Daimler и итальянский Fiat также публично подтвердили высокий интерес к мотору Скудери. Компания Robert Bosch заключила контракт со Scuderi Group на разработку компонентов к SCC в надежде, что однажды эта технология станет серийной. А выдающийся специалист по термодинамике из Массачусетского технологического института профессор Джон Хейвуд назвал разделенный цикл сгорания реальной альтернативой HCCI. Наладить сборку таких ДВС в промышленных масштабах на существующих заводах несложно — никаких экзотических материалов и нестандартных технологических операций для этого не требуется.

Всеядный двухтактник

Многие специалисты по ДВС сегодня делают ставку на механизм изменяемой степени сжатия VCR (Variable Compression Rate). Еще в марте 2000-го инженеры Saab представили прототип автомобиля с экспериментальным бензиновым двигателем 1,6 л с технологией SVC (Saab Variable Compression). Этот мотор выдавал 228 л.с. и 305 Н м крутящего момента, потребляя при этом на 30% меньше топлива, чем обычные аналоги по мощности.


За прошедшие десять лет технология VCR сделала огромный шаг вперед. Французская компания MCE объявила недавно о создании двигателя MCE-5VCR. Степень сжатия в нем изменяется в пределах от 7:1 до 20:1, а расход топлива 1,5-литрового мотора на 30% ниже, чем у аналогов. Американская Envera разрабатывает 4-цилиндровый бензиновый VCR объемом 1,85 л со степенью сжатия от 8,5:1 до 18:1. Работа финансируется Департаментом энергетики США. Целевая мощность мотора составляет 300 л.с.- почти 162 л.с. на 1л объема. Расчетный максимальный крутящий момент превышает 400 Н м при 4000 оборотах вала. Ключевой элемент конструкции — гидравлический актуатор, который поворачивает эксцентрик, связанный с коленвалом двигателя. Качание эксцентрика поднимает и опускает вал относительно головки блока цилиндров, изменяя степень сжатия от 8,5 до 18:1.

Дальше всех в разработке технологии VCR продвинулась знаменитая Lotus Engineering. На Женевском автосалоне в марте 2009 года британцы представили свой концептуальный ДВС Omnivore («Всеядный»). Двухтактный бензиновый мотор с прямым впрыском топлива и изменяемой степенью сжатия от 10:1 до 40:1, по заявлению инженеров Lotus, способен переваривать любое жидкое топливо и при этом экономичен и экологически чист.

Пять тактов, три циллиндра

На выставке Engine EXPO 2009 британская компания Ilmor Engineering представила концептуальный пятитактный ДВС. Идея автора концепции Герхарда Шмитца заключается в использовании четырех- и двухтактной схемы в одном агрегате. Три цилиндра пятитактного ДВС имеют разный внутренний диаметр. Маленькие первый и третий работают по обычному четырехтактному циклу. Средний, низкого давления, — на остаточном расширении отработанных газов в двухтактном режиме. Во время первых трех тактов смесь, как обычно, всасывается, сжимается и совершает рабочий ход в малых цилиндрах. Во время четвертого такта отработавшие газы перемещаются из малых цилиндров в большой и сжимаются. Остаточное расширение выхлопа в большом цилиндре обусловливает пятый, рабочий такт.

Omnivore — это моноблок с цельнолитыми блоком и головкой. Рабочий объем мотора — всего 0,5 л. Одно из главных преимуществ моноблока — отсутствие выработки диаметра цилиндра. В обычных ДВС износ происходит из-за микронных движений болтов в местах крепления головки к блоку. Инновационный улавливающий клапан CTV (Charge Trapping Valve) в выпускном тракте позволяет варьировать время открытия выпускного клапана в широком диапазоне. Система впрыска FlexDI с давлением 6,5 атм для Omnivore создана австралийской компанией Orbital. Она позволяет готовить сбалансированную смесь внутри цилиндра независимо от вида топлива. Такая смесь является базовой для режима HCCI, а система управления впрыском — основой для управления параметрами HCCI.

Механизм изменения степени сжатия Omnivore представляет собой подвижную шайбу в верхней части цилиндра, движущуюся за счет вращения пары эксцентриков. В нижней позиции шайбы степень сжатия достигает 40:1. В шайбу интегрирован один из инжекторов FlexDI, а второй, неподвижный, встроен в корпус цилиндра. Испытания продемонстрировали надежную работу Omnivore в режиме HCCI во всем диапазоне оборотов, при этом он с солидным зазором уложился в рамки нормативов Евро-6.

Почему британцы взялись за двухтактную конфигурацию? «Lotus Engineering, как и многие другие автокомпании, долго придерживалась четырехтактных концепций. Это следствие исторического доминирования таких агрегатов. Проблема таких ДВС — неэффективное сжигание топлива на частичных и экстремальных нагрузках. Двухтактники не страдают этим недугом и потому крайне интересны для автоиндустрии. Кроме того, они не требуют компактизации», — поясняет Джейми Тернер, главный инженер Lotus Engineering. По оценкам Lotus, коммерциализация Omnivore займет еще полтора-два года.

Какие критерии считают ключевыми для выбора «самого-самого»? Есть ли принципиальные отличия в подходе к конструированию на разных континентах? Попробуем найти ответы на эти вопросы.

ЕВРОПА: В РЕЖИМЕ ЭКОНОМИИ

На недавней пресс-конференции в Лондоне глава концерна «Пежо-Ситроен» Жан-Мартин Фольц весьма неожиданно для многих отозвался о гибридных автомобилях: «Посмотрите вокруг: таких машин в Европе менее 1%, тогда как доля дизелей достигает половины». По мнению господина Фольца, современный дизель гораздо дешевле в производстве, будучи не менее экономичен и экологичен.

Времена, когда дизели оставляли за собой черный шлейф, тарахтели на всю улицу и заметно уступали по литровой мощности бензиновым моторам, прошли. Сегодня удельная доля дизелей в Европе составляет 52% и продолжает расти. Толчок дают, например, экологические бонусы в виде сниженных налогов, но прежде всего - дороговизна бензина.

Прорыв на дизельном фронте произошел к концу 90-х, когда в серию пошли первые моторы с «коммон рейл» - общей топливной рампой. С тех пор давление в ней неуклонно растет. В новейших двигателях оно достигает 1800 атмосфер, а ведь еще недавно 1300 атмосфер считались выдающимся показателем.

На очереди - системы с двукратным повышением давления впрыска. Сначала насос нагнетает топливо в аккумулирующий резервуар до 1350 атм. Затем давление поднимают до 2200 атм, под которыми оно и поступает в форсунки. Под таким давлением топливо впрыскивают через отверстия меньшего диаметра. Это улучшает качество распыла, повышает точность дозировки. Отсюда выигрыш в экономичности и мощности.

Уже не первый год применяют пилотный впрыск: первая «партия» горючего поступает в цилиндры чуть раньше основной дозы, чем достигается более мягкая работа мотора и чистый выхлоп.

Помимо «коммон рейла», есть иное техническое решение, чтобы поднять давление впрыска на небывалую высоту. Насос-форсунки перебрались с грузовых моторов и на легковые дизели. Им привержен, в частности, «Фольксваген », составляя здоровую конкуренцию «общей рампе».

Одним из камней преткновения на пути дизеля всегда был экологический. Если бензиновые моторы журили за угарный газ, окиси азота и углеводороды в выхлопе, то дизели - за соединения азота и частицы сажи. Введение в прошлом году норм Евро IV далось непросто. С окислами азота справились посредством нейтрализатора, а вот сажу ловит особый фильтр. Он служит до 150 тыс. км, после чего его либо меняют, либо «прокаливают». По команде управляющей электроники в цилиндр подаются отработавшие газы из системы рециркуляции и большая доза топлива. Температура выхлопа повышается, и сажа выгорает.

Примечательно, что большинство новых дизелей могут работать на биодизельном горючем: в его основе лежат растительные масла, а не нефтепродукты. Это горючее менее агрессивно к окружающей среде, поэтому его массовая доля на рынке Европы должна достигнуть к 2010 году 30%.

Пока же специалисты отмечают совместную разработку «Дженерал моторс» и ФИАТ - один из «Двигателей года 2005». Малолитражный дизель благодаря электронике способен оперативно менять параметры впрыска и тем самым обеспечивать больший момент и быстрый пуск двигателя. Широкое использование алюминия, существенно снизившее массу и размеры, в сочетании с достаточной мощностью 70 л.с. и немалым крутящим моментом 170 Н.м позволили 1,3-литровому мотору набрать большое число голосов.

Учитывая все достижения на дизельном фронте, можно смело утверждать - ближайшее будущее Европы именно за этими двигателями. Они становятся мощнее, тише и удобнее для повседневной езды. С учетом теперешних цен на нефть потеснить их в Старом Свете не способен ни один из существующих типов двигателей.

АЗИЯ: БОЛЬШЕ СИЛ НА ЛИТР

Главное достижение японских двигателистов за последний десяток лет - высокая литровая мощность. Загнанные законодательством в узкие рамки, инженеры ухитряются добиться отменных результатов самыми разными способами. Яркий пример - изменяемые фазы газораспределения. В конце 80-х японская «Хонда » с ее системой VTEC совершила настоящий переворот.

Необходимость варьировать фазы диктуется различными режимами движения: в городе важнее всего экономичность и крутящий момент на низких оборотах, на трассе - на высоких. Отличаются и пожелания покупателей в разных странах. Раньше настройки мотора были постоянными, теперь же стало возможным менять их в буквальном смысле на ходу.

Современные моторы «Хонда » оснащают несколькими типами VTEC, в том числе и трехступенчатым устройством. Здесь корректируются параметры не только на низких и высоких оборотах, но и на средних. Так удается совместить несовместимое: высокую удельную мощность (до 100 л.с./л), расход топлива в режиме 60–70 км/ч на уровне 4 л на сотню и высокий крутящий момент в диапазоне от 2000 до 6000 об/мин.

В результате японцы успешно снимают высокую мощность с весьма скромных объемов. Рекордсменом по этому показателю который год подряд остается родстер «Honda S2000 » с безнаддувным 2-литровым двигателем мощностью 250 л.с. Несмотря на то, что мотор появился еще в 1999 году, он по-прежнему в числе лучших - второе место среди претендентов 2005 года объемом 1,8–2,0 л. Вторым бесспорным достижением японцев являются гибридные установки. «Гибрид Синержи Драйв» производства «Тойоты» отметился среди призеров не один раз, набрав наибольшее число баллов в номинации «экономичный двигатель». Заявленный показатель - 4,2 л/100 км для такой немаленькой машины, как «Тойота Приус », безусловно хорош. Мощность «Синержи Драйв» достигает 110 л.с., а суммарный момент бензиноэлектрической установки- выдающийся - 478 Н.м!

Кроме топливной экономичности, подчеркивается экологический аспект: выброс углеводородов и окислов азота у мотора на 80 и 87,5% ниже, чем того требуют нормы Евро IV для бензиновых моторов, и на 96% ниже требований к дизелям. Таким образом, «Синержи Драйв» с запасом укладывается в самые жесткие в мире рамки - ZLEV, планируемые к введению в Калифорнии.

В последние годы наметилась любопытная тенденция: применительно к гибридам речь все реже идет об абсолютных рекордах экономичности. Возьмем «Lexus RX 400h». Этот автомобиль расходует вполне обычные 10 л в городском цикле. С одной оговоркой - это очень мало, учитывая мощность основного мотора 272 л.с. и момент 288 Н.м!

Если японским компаниям, в первую очередь «Тойоте» и «Хонде», удастся снизить себестоимость агрегатов, продажи гибридов могут подскочить на порядок уже в ближайшие 5–10 лет.

АМЕРИКА: ДЕШЕВО И СЕРДИТО

На форумах американских автомобилей после проведения конкурса «Двигатель года» обязательно возникают дебаты: как это так, в числе победителей нет ни одного двигателя нашей разработки! Все просто: американцы, несмотря на продолжающийся топливный кризис, не слишком преуспели в экономии бензина, а про дизельное топливо и слышать не хотят! Но это не значит, что им нечем похвастать.

К примеру, «крайслеровские» моторы серии «Хеми», блиставшие на мощных моделях (их традиционно именуют в США «масл карз») еще в 50-х. Их название ведет родословную от английского hemispherical - полусферический. Конечно, за полвека многое изменилось, но, как и раньше, у современных «хеми» полусферические камеры сгорания.

Традиционно во главе линейки моторов стоят агрегаты неприличного по европейским меркам литража - вплоть до 6,1 л. Стоит открыть проспект, в глаза бросается разница в подходах к конструированию. «Лучшая в классе мощность», «самый быстрый разгон», «низкий уровень шума»… о расходе топлива говорится вскользь. Хотя он, конечно, небезразличен инженерам. Просто приоритеты несколько иные - динамические характеристики и… невысокая себестоимость агрегата.

В моторах «Хеми» нет изменяемых фаз. Они не столь форсированы и не могут даже близко подойти к лучшим японским агрегатам по литровой мощности. Зато в них применена хитроумная система MDS (Multi Displacement System - система нескольких объемов). Как намекает название, ее смысл кроется в отключении четырех из восьми цилиндров двигателя, когда не требуется использовать все 335 «лошадей» и 500 Н.м момента, например у двигателя объемом 5,7л. На отключение уходит всего 40 миллисекунд. Подобные системы прежде использовал «Джи-Эм», а у «Крайслера» это первый опыт. По заверению фирмы, MDS позволяет сэкономить до 20% топлива, в зависимости от манеры вождения. Боб Ли, вице-президент отделения двигателей «Крайслер », очень горд новым мотором: «Отключение цилиндров происходит элегантно и просто… преимущества - надежность и низкая цена».

Естественно, отключаемыми цилиндрами американские инженеры не ограничиваются. Они готовят и совсем другие разработки, например силовые установки на топливных элементах. Судя по появлению все новых концепт-каров именно с такими моторами, их будущее рисуется в розовых тонах.

Конечно, мы отметили лишь наиболее яркие особенности «национального двигателестроения». Современный мир слишком тесен, чтобы в нем бок о бок существовали принципиально разные культуры, не оказывая влияния друг на друга. Быть может, однажды выведут рецепт идеального «глобального» мотора? Пока каждый предпочитает бежать своей дорожкой: Европа готовится перевести чуть не половину парка на рапсовое масло; Америка хоть и старается не замечать происходящих в мире перемен, постепенно отвыкает от прожорливых мастодонтов и раздумывает над переводом инфраструктуры всей страны на водородное топливо; ну а Япония… как всегда, берет высокими технологиями и ошеломляющей скоростью их внедрения в жизнь.

ДИЗЕЛЬ «ПСА-ФОРД»

В ближайшее время начнется производство двух новых моторов, разработанных совместно концерном «Пежо-Ситроен» и «Фордом» (журналистам их представляет инженер «Форда» Фил Лэйк). Дизели объемом 2,2 л адресованы коммерческим и легковым автомобилям. Система «коммон рейл» отныне работает под давлением 1800 атм. Топливо впрыскивается в камеру сгорания через семь 135-микронных отверстий в пьезоэлектрических форсунках (ранее их было пять). Теперь стало возможным впрыскивать топливо до шести раз за один оборот коленчатого вала. Результат - более чистый выхлоп, экономия топлива, снижение вибраций.

Применили два компактных малоинерционных турбокомпрессора. Первый ответствен исключительно за «низы», второй подключается после 2700 об/мин, обеспечивая плавную кривую крутящего момента, достигающего 400 Н.м при 1750 об/мин и мощности 125 л.с. при 4000 об/мин. Масса двигателя по сравнению с предыдущим поколением снижена на 12 кг благодаря новой архитектуре блока цилиндров.

Л етом 2017 года научно-техническое сообщество облетела новость – молодой учёный из Екатеринбурга победил в общероссийском конкурсе инновационных проектов в области энергетики. Конкурс называется «Энергия прорыва», к участию допускаются учёные не старше 45 лет, и Леонид Плотников, доцент «Уральского федерального университета имени первого президента России Б.Н. Ельцина» (УрФУ), удостоился в нём приза в 1 000 000 рублей.

Сообщалось, что Леонид разработал четыре оригинальных технических решения и получил семь патентов для систем впуска и выпуска ДВС, как турбированных, так и атмосферных. В частности, доработка впускной системы турбомотора «по методу Плотникова» способна исключить перегрев, снизить шумность и количество вредных выбросов. А модернизация выпускной системы турбированного ДВС на 2% повышает КПД и на 1,5% снижает удельный расход топлива. В итоге мотор становится более экологичным, стабильным, мощным и надёжным.

Действительно ли всё это так? В чём суть предложений учёного? Нам удалось побеседовать с победителем конкурса и всё разузнать. Из всех оригинальных технических решений, разработанных Плотниковым, мы остановились как раз на обозначенных выше двух: доработанных системах впуска и выпуска турбированных моторов. Возможно, стиль изложения поначалу покажется вам сложным для восприятия, но читайте вдумчиво, и в конце мы доберёмся до сути.

Проблемы и задачи

Авторство описанных ниже разработок принадлежит группе учёных УрФУ, в которую входят доктор технических наук, профессор Бродов Ю.М., доктор физико-математических наук, профессор Жилкин Б.П. и кандидат технических наук, доцент Плотников Л.В. Работа именно этой группы удостоилась гранта в миллион рублей. В инженерной проработке предлагаемых технических решений им помогали специалисты ООО «Уральский дизель-моторный завод», а именно, начальник отдела, кандидат технических наук Шестаков Д.С. и заместитель главного конструктора, кандидат технических наук Григорьев Н.И.

Одним из ключевых параметров их исследования стала теплоотдача, идущая от потока газа в стенки впускного или выпускного трубопровода. Чем теплоотдача ниже, тем меньше термические напряжения, выше надёжность и производительность системы в целом. Для оценки интенсивности теплоотдачи используют параметр, который называется локальным коэффициентом теплоотдачи (он обозначается как αх), и задача исследователей состояла в том, чтобы найти пути уменьшения этого коэффициента.



Рис. 1. Изменение локального (lх = 150 мм) коэффициента теплоотдачи αх (1) и скорости потока воздуха wх (2) во времени τ за свободным компрессором турбокомпрессора (далее – ТК) при гладком круглом трубопроводе и разных частотах вращения ротора ТК: а) nтк = 35 000 мин-1; б) nтк = 46 000 мин-1

Вопрос для современного двигателестроения серьёзный, поскольку газовоздушные тракты входят в перечень наиболее термонагруженных элементов современных ДВС, и особенно остро задача снижения теплоотдачи в впускном и выпускном трактах стоит для турбированных двигателей. Ведь в турбомоторах, по сравнению с атмосферниками, повышены давление и температура на впуске, увеличена средняя температура цикла, выше пульсация газа, которая вызывает термомеханические напряжения. Термонагруженность ведёт к усталости деталей, снижает надёжность и срок службы элементов двигателя, а также приводит к неоптимальным условиям сгорания топлива в цилиндрах и падению мощности.

Учёные считают, что термическую напряженность турбодвижка можно снизить, и тут, как говорится, есть нюанс. Обычно для турбокомпрессора считаются важными две его характеристики – давление наддува и расход воздуха, а сам узел в расчётах принимается статичным элементом. Но на самом деле, отмечают исследователи, после установки турбокомпрессора существенно изменяются тепломеханические характеристики потока газа. Поэтому прежде чем изучать то, как меняется αх на впуске и выпуске, надо исследовать сам поток газа закомпрессором. Сначала – без учёта поршневой части двигателя (что называется, за свободным компрессором, см. рис. 1), а потом – вместе с ней.

Была разработана и создана автоматизированная система сбора и обработки экспериментальных данных – с пары датчиков снимались и обрабатывались значения скорости потока газа wх и локального коэффициента теплоотдачи αх. Кроме того, была собрана одноцилиндровая модель двигателя на базе мотора ВАЗ-11113 с турбокомпрессором ТКР-6.



Рис. 2. Зависимость локального (lх = 150 мм) коэффициента теплоотдачи αх от угла поворота коленчатого вала φ во впускном трубопроводе поршневого ДВС с наддувом при разных частотах вращения коленчатого вала и разных частотах вращения ротора ТК: а) n = 1 500 мин-1; б) n = 3 000 мин-1, 1 - n = 35 000 мин-1; 2 - nтк = 42 000 мин-1; 3 - nтк = 46 000 мин-1

Проведённые исследования показали, что турбокомпрессор – мощнейший источник турбулентности, которая влияет на тепломеханические характеристики потока воздуха (см. рис. 2). Кроме того, исследователи установили, что сама по себе установка турбокомпрессора повышает αх на впуске двигателя примерно на 30% - отчасти из-за того, что воздух после компрессора просто значительно горячее, чем на впуске атмосферного мотора. Была замерена и теплоотдача на выпуске мотора с установленным турбокомпрессором, и оказалось, что чем выше избыточное давление, тем менее интенсивно происходит теплоотдача.


Рис. 3. Схема впускной системы двигателя с наддувом с возможностью сброса части нагнетаемого воздуха: 1 - впускной коллектор; 2 - соединительный патрубок; 3 - соединительные элементы; 4 - компрессор ТК; 5 - электронный блок управления двигателем; 6 - электропневмоклапан].

В сумме получается, что для снижения термонагруженности необхожимо следующее: во впускном тракте нужно уменьшать турбулентность и пульсацию воздуха, а на выпуске – создавать дополнительное давление или разрежение, разгоняя поток – это снизит теплоотдачу, а кроме того, положительно скажется на очистке цилиндров от отработанных газов.

Все эти вроде бы очевидные вещи нуждались в детальных замерах и в анализе, которого никто ранее не делал. Именно полученные цифры позволили выработать меры, которые в будущем способны если не произвести революцию, то уж точно вдохнуть, в прямом смысле слова, новую жизнь во всю отрасль двигателестроения.


Рис. 4. Зависимость локального (lх = 150 мм) коэффициента теплоотдачи αх от угла поворота коленчатого вала φ во впускном трубопроводе поршневого ДВС с наддувом (nтк = 35 000 мин-1) при частоте вращения коленчатого вала n = 3 000 мин-1. Доля сброса воздуха: 1 - G1 = 0,04; 2 - G2 = 0,07; 3 - G3 = 0,12].

Сброс избытка воздуха на впуске

Во-первых, исследователи предложили конструкцию, позволяющую стабилизировать поток воздуха на впуске (см. рис. 3). Электропневмоклапан, врезанный во впускной тракт после турбины и в определённые моменты сбрасывающий часть сжатого турбокомпрессором воздуха, стабилизирует поток– уменьшает пульсацию скорости и давления. В итоге это должно привести к снижению аэродинамического шума и термических напряжений во впускном тракте.

А сколько же нужно сбросить, чтобы система эффективно работала, не ослабляя значительно эффекта турбонаддува? На рисунках 4 и 5 мы видим результаты проведённых замеров: как показывают исследования, оптимальная доля сбрасываемого воздуха G лежит в диапазоне от 7 до 12% – такие значения снижают теплоотдачу (а значит – и термонагруженность) во впускном тракте двигателя до 30%, то есть, приводят её к значениям, характерным для атмосферных моторов. Дальше увеличивать долю сброса смысла нет – эффекта это уже не даёт.


Рис. 5. Сравнение зависимостей локального (lх = 150 мм, d = 30 мм) коэффициента теплоотдачи αх от угла поворота коленчатого вала φ во впускном трубопроводе поршневого ДВС с наддувом без сброса (1) и со сбросом части воздуха (2) при nтк = 35 000 мин-1 и n = 3 000 мин-1, доля сброса избыточного воздуха равна 12% от общего расхода].

Эжекция на выпуске

Ну а что же выпускная система? Как мы говорили выше, она в турбированном моторе тоже работает в условиях повышенных температур, а кроме того, выпуск всегда хочется сделать как можно более способствующим максимальной очистке цилиндров от отработавших газов. Традиционные методы решения этих задач уже исчерпаны, есть ли тут ещё какие-то резервы для улучшения? Оказывается, есть.

Бродов, Жилкин и Плотников утверждают, что улучшить газоочистку и надёжность выпускной системы можно путём создания в ней дополнительного разрежения, или эжекции. Эжекционный поток, по мнению разработчиков, так же, как и клапан на впуске, снижает пульсацию потока и увеличивает объёмный расход воздуха, что способствует лучшей очистке цилиндров и повышению мощности двигателя.


Рис. 6. Схема выпускной системы с эжектором: 1 – головка цилиндра с каналом; 2 – выпускной трубопровод; 3 – труба выхлопная; 4 – эжекционная трубка; 5 – электропневмоклапан; 6 – электронный блок управления].

Эжекция положительно влияет на теплоотдачу от выпускных газов к деталям выпускного тракта (см. рис. 7): с такой системой максимальные значения локального коэффициента теплоотдачи αхполучаются на 20% ниже, чем при традиционном выпуске – за исключением периода закрытия впускного клапана, тут интенсивность теплоотдачи, напротив, несколько выше. Но в целом теплоотдача всё равно меньше, и исследователи сделали предположение, что эжектор на выпуске турбомотора повысит его надёжность, так как снизит теплоотдачу от газов стенкам трубопровода, а сами газы будут охлаждаться эжекционным воздухом.


Рис. 7.Зависимости локального (lх = 140 мм) коэффициента теплоотдачи αх от угла поворота коленчатого вала φ в выпускной системе при избыточном давлении выпуска рb = 0,2 МПа и частоте вращения коленчатого вала n = 1 500 мин-1. Конфигурация выпускной системы: 1 - без эжекции; 2 - с эжекцией.]

А если объединить?..

Получив такие выводы на экспериментальной установке, учёные пошли дальше и применили полученные знания на реальном двигателе – в качестве одного из «подопытных» был выбран дизель 8ДМ-21ЛМ производства ООО «Уральский дизель-моторный завод».Такие моторы применяются в качестве стационарных энергоустановок. Кроме того, в работах использовался и «младший брат» 8-цилиндрового дизеля, 6ДМ-21ЛМ, также V-образный, но имеющий шесть цилиндров.


Рис. 8. Установка электромагнитного клапана для сброса части воздуха на дизеле 8ДМ-21ЛМ: 1 - клапан электромагнитный; 2 - впускной патрубок; 3 - кожух выпускного коллектора; 4 - турбокомпрессор.

На «младшем» моторе была реализована система эжекции на выпуске, логично и весьма остроумно объединённая с системой сброса давления на впуске, которую мы рассмотрели чуть ранее – ведь как было показано на рисунке 3, сбрасываемый воздух может использоваться для нужд двигателя. Как видим (рис. 9), над выпускным коллектором проложены трубки, в которые подаётся воздух, забранный со впуска – это то самое избыточное давление, создающее турбулентность после компрессора. Воздух из трубок «раздаётся» через систему электроклапанов, которые стоят сразу за выпускным окном каждого из шести цилиндров.


Рис. 9. Общий вид модернизированной выпускной системы двигателя 6ДМ-21ЛМ: 1 – выпускной трубопровод; 2 – турбокомпрессор; 3 – газоотводящий патрубок; 4 – система эжекции.

Такое эжекционное устройство создаёт дополнительное разрежение в выпускном коллекторе, что ведёт к выравниванию течения газов и ослаблению переходных процессов в так называемом переходном слое. Авторы исследования замерили скорость потока воздуха wх в зависимости от угла поворота коленчатого вала φ с применением эжекции на выпуске и без неё.

Из рисунка 10 видно, что при эжекции максимальная скорость потока выше, а после закрытия выпускного клапана она падает медленнее, чем в коллекторе без такой системы – получается своеобразный «эффект продувки». Авторы говорят, что результаты свидетельствуют о стабилизации потока и лучшей очистке цилиндров двигателя от отработавших газов.


Рис. 10. Зависимости местной (lx = 140 мм, d = 30 мм) скорости потока газа wх в выпускном трубопроводе с эжекцией (1) и традиционном трубопроводе (2) от угла поворота коленчатого вала φ при частоте вращения коленчатого вала n = 3000 мин-1 и начальном избыточном давлении pb = 2,0 бар.

Что в итоге

Итак, давайте по порядку. Во-первых, если из впускного коллектора турбомотора сбрасывать небольшую часть сжатого компрессором воздуха, можно снизить теплоотдачу от воздуха к стенкам коллектора до 30% и при этом сохранить массовый расход воздуха, поступающего в мотор, на нормальном уровне. Во-вторых, если применить эжекцию на выпуске, то теплоотдачу в выпускном коллекторе тоже можно существенно снизить – проведённые замеры дают величину около 15%, – а также улучшить газоочистку цилиндров.

Объединяя показанные научные находки для впускного и выпускного трактов в единую систему, мы получим комплексный эффект: забирая часть воздуха со впуска, передавая её на выпуск и точно синхронизировав эти импульсы по времени, система будет выравнивать и «успокаивать» процессы течения воздуха и отработавших газов. В результате мы должны получить менее термонагруженный, более надёжный и производительный по сравнению с обычным турбомотором двигатель.

Итак, результаты получены в лабораторных условиях, подтверждены математическим моделированием и аналитическими расчетами, после чего создан опытный образец, на котором проведены испытания и подтверждены положительные эффекты. Пока всё это реализовано в стенах УрФУ на большом стационарном турбодизеле (моторы такого типа используют также на тепловозах и судах), однако заложенные в конструкцию принципы могли бы прижиться и на моторах поменьше – представьте, например, что ГАЗ Газель, УАЗ Патриот или LADA Vesta получают новый турбомотор, да ещё с характеристиками лучше, чем у зарубежных аналогов… Возможно ли, чтобы новая тенденция в двигателестроении началась в России?

Есть у учёных из УрФУ и решения для снижения термонагруженности атмосферных моторов, и одно из них – профилирование каналов: поперечное (путём введения вставки квадратного или треугольного сечения) и продольное. В принципе, по всем этим решениям сейчас можно строить рабочие образцы, проводить испытания и при их положительном исходе запускать серийное производство – заданные проектно-конструкторские направления, по мнению учёных, не требуют значительных финансовых и временных затрат. Теперь должны найтись заинтересованные производители.

Леонид Плотников говорит, что считает себя в первую очередь учёным и не ставит цели коммерциализировать новые разработки.

Среди целей я, скорее, назвал бы проведение дальнейших исследований, получение новых научных результатов, разработку оригинальных конструкций газовоздушных систем поршневых ДВС. Если мои результаты будут полезны промышленности, то я буду рад. По опыту знаю, что внедрение результатов – очень сложный и трудоемкий процесс, и если в него погружаться, то на науку и преподавание не останется времени. А я больше склонен именно к области образования и науки, а не к промышленности и бизнесу

доцент «Уральского федерального университета имени первого президента России Б.Н. Ельцина» (УрФУ)


Однако добавляет, что уже начался процесс внедрения результатов исследования на энергомашины ПАО «Уралмашзавод». Темпы внедрения пока невысоки, вся работа находится на начальном этапе, и конкретики очень мало, однако заинтересованность у предприятия есть. Остаётся надеяться на то, что результаты этого внедрения мы всё же увидим. А также на то, что работа учёных найдёт применение в отечественном автопроме.

А как вы оцениваете результаты исследования?



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png