История развития бесшатунных поршневых двигателей предложенных С.Баландиным, берет начало в тридцатых-сороковых годах прошлого века, когда в конструкторском бюро, где работал автор, были разработаны и построены несколько типов авиационных двигателей с необычным, отличным от кривошипно-шатунного, силовым механизмом.

Рис. 1

Рис. 2

Базой для начала проектирования двигателя послужила известная кинематическая схема обращенного эллипсографа (рис.1), траектория движения точек которого описывается уравнением эллипса:

Где r - радиус начальной окружности, а d - координата произвольной точки m .

Все точки, лежащие на прямой А В, описывают эллипсы, точка С - окружность (как частный случай эллипса), точки же А и В, как лежащие на поверхности Д, совершают возвратно-поступательное движение в пределах 4r. Дуга окружности Д без скольжения обкатывается по дуге Е вдвое большего диаметра. Привязав к точкам, лежащим произвольно на поверхности Д (например к точкам А и В), крейцкопфы со штоками и поршнями, а к точке С - выходной вал, получаем бесшатунный механизм, имеющий одну избыточную кинематическую связь. Т.е. для обеспечения прямолинейности траекторий точек А и В, соединенных между собой и с точкой С кривошипа ОС жестким звеном АСВ, достаточно иметь направляющие только у одной точки А или В (рис.2). Но такая схема неприемлема по условиям распределения действующих в механизме сил. Если установить направляющую только в точке А, то по мере приближения угла φ к 90° и 270° составляющие, приложенные к точке А силы P - боковая сила N= P·tg φ и направленная вдоль оси АС сила S=P/cos φ - неограниченно возрастают, стремясь к бесконечности. Поэтому введение в кинематическую схему второй направляющей отвечает условиям работоспособности механизма.
Высказанное выше обоснование принадлежит самому С. Баландину, оно в конечном итоге и определило всю эволюцию развития бесшатунных двигателей первого поколения. Все построенные образцы (в том числе и автором) основывались на схеме с одной избыточной кинематической связью.

Предложенный С.Баландиным силовой механизм бесшатунного двигателя казалось, быстро потеснит двигатели классической компоновки, и машиностроительные предприятия, используя наработки авиационной промышленности, смогут запустить его в серийное производство без особых проблем. К тому времени авиация прочно освоила газовые турбины, и поршневые двигатели ее перестали интересовать.

Вот тут и выяснилось, что для общего машиностроения слишком дорогой ценой обеспечиваются те технологии, которые доступны авиационной промышленности. Встал вопрос об изменении конструкции двигателя под существующие возможности действующих предприятий. При кажущейся простоте механизм содержал неотработанные кинематические связи, а в применении к тепловым машинам они были слабо изучены и поэтому их возможности плохо прогнозировались. Всего одна избыточная кинематическая связь в таком сложном механизме как ДВС ставила под сомнение всю его дальнейшую работоспособность. Тем более не было понимания того, как от этой связи избавиться, синхронизирующий механизм о котором идет речь, являлся неотъемлемой частью самого двигателя. Сегодня, спустя шестьдесят лет с момента появления первого бесшатунного двигателя можно уверенно сказать (лучше поздно,чем никогда), что эта проблема полностью решена.

Рис. 3

1,2,3,4 -поршни; 5,6 - штоковые подшипники; 7,8-консольный вал; 9,10,11,12 - шестерни синхронизирующего механизма; 13-коленчатый вал; А,В,С,Д- подвижные опоры.

На рис.3 изображена типовая кинематическая схема бесшатунного двигателя С.Баландина. Хорошо видно, что всего один планетарно вращающийся вал заменяет в силовом механизме все шатуны. Вал установлен между двумя консольными вращающимися опорами, которые в свою очередь соединены между собой шестеренчатым механизмом. Это и есть универсальный механизм связи поршней, предложенный С.Баландиным и обеспечивший в построенных образцах: малые габариты и вес, высокую оборотность, рациональный двухсторонний рабочий процесс в цилиндрах, эффективную систему охлаждения поршней и наконец, высокий механический КПД, величина которого на некоторых режимах работы двигателя достигала 94 % (в обычных ДВС около 85%).

С выходом в свет книги С.Баландина "Бесшатунные ДВС" 1968 и 1972 г. изданий многочисленными коллективами инженеров и рядом заводов (таких как "Дагдизель", СКБ "Серп и Молот" и т.д.) начали предприниматься попытки построить двигатель, скопировав его в первоначальном, или даже в усовершенствованном вариантах. Процесс проектирования и изготовления проводился, как правило, на основе расчетов и методик, предложенных автором. Вопреки ожиданиям, у большинства построенных образцов при первых оборотах вала происходило заклинивание силового механизма в корпусе двигателя в результате задира поршней о зеркало цилиндров. Те, кто сумел спроектировать и построить работоспособный двигатель, обнаруживали в нем интенсивный износ и выкрашивание крейцкопфных направляющих (питтинг). Все попытки бороться с этим явлением не приносили успеха. Живучесть силового механизма определялась несколькими часами работы.

Постоянные неудачи сформировали в научной и конструкторской среде негативное отношение к самой идее создания бесшатунного двигателя этого типа. Выяснилось, что никто кроме самого С.Баландина так и не смог построить работоспособную конструкцию. По признанию же самого автора, каждый четвертый двигатель, вышедший в свое время из стен его КБ, выходил из строя из-за указанных выше неполадок.

Оглядываясь на классический кривошипно-шатунный механизм обычного (тронкового) двигателя, замечаем, что при всех своих недостатках он обладает высокой надежностью. Его длительная работоспособность определяется тем, что каждая, отдельно взятая деталь этого двигателя испытывает симметричное нагружение. Этому способствует и жесткое крепление коленчатого вала в подшипниковых опорах, стоящих по обе стороны от шатунов. Чего не скажешь о двигателе С.Баландина (рис.3), в котором каждый поршень (1-4) через штоковую (шатунную) шейку (5,6) опирается одной стороной на скользящий крейцкопф (А,В или С,Д), а другой стороной на подверженный изгибу консольный вал (7,8). Соответственно 50% нагрузки от газовых сил приходится на крейцкопфную опору (под ней находится остов двигателя), а остальные 50%, воспринимаются "упругим элементом" - какая уж тут надежность.

В сверхмощных двигателях С.Баландина эта проблема была частично решена путем размещения концевых шеек планетарного вала внутри подшипников большого диаметра, при этом окружные скорости сопрягаемых наружных поверхностей подшипников увеличивались втрое.

Следующей нерешенной проблемой оставалась система подачи масла к трущимся поверхностям подшипников бесшатунного двигателя. Так, если концевые подшипники консольных опор А и Д работают в условиях гидродинамической жидкостной смазки, то создать аналогичные условий работы крейцкопфам В и С которые за один оборот вала дважды останавливаются невозможно, такие подшипники могут работать только как гидростатические опоры т.е. на них распространяется совсем другая теория смазки, она не создает гидродинамического масляного клина между сопрягаемыми плоскостями и ей необходимо отслеживать непрерывно изменяются условия поддержания крейцкопфа над опорными поверхностями. Сказанное лишь разъясняет, что для смазки одной детали- вала, используются принципиально разные системы смазки. Что не есть хорошо. И если это препятствие и не удастся обойти, то необходимо подшипники, принадлежащие общему валу и выполняющие одни и те же функции сделать хотя бы однотипными.

Основная же причина того, что применение рассматриваемой кинематической схемы не получило практической реализации, состоит в том, что она сложнее обычного кривошипно-шатунного механизма. В силовом механизме, помимо основных элементов, используются дополнительные синхронизирующие валы, связанные с основным валом шестернями. Большое количество сопрягаемых элементов требует высокого технологического уровня их изготовления. Соединенные последовательно, шестерни синхронизирующего механизма (9-12) образуют длинную размерную цепь. Значение ее суммарного допуска должно быть меньше величины диаметрального зазора одного из крайних подшипников планетарного вала, иначе невозможно обеспечить его правой и левой половине синхронного вращения. Уложиться же в этот допуск технологически сложно (об этом и шла речь в начале статьи).

Следующий раздел посвящен силовым механизмам нового поколения, где на смену «синхронизирующему механизму» приходят «синхронизирующие шейки», позволяющие в бесшатунном двигателе отказаться от избыточной кинематической связи, поставившей фактически крест на этом направлении.

Рис. 4

Р - сила давления газов; N - боковая сила; S - сила направленная вдоль оси АСВ; 1,2,3,4 - поршень; 5,6 - рабочий крейцкопф; 7,8 - синхронизирующий крейцкопф; I, II - синхронизирующая шейка; α - расстояние между центрами соседних шеек коленчатого вала; А,В,А",В"- опоры.

Как видно из рис. 4 в схеме уже отсутствует ставший привычным механизм синхронизации, вместо него у планетарно вращающегося коленчатого вала появились собственные планетарные опоры способные выполнять те же функции, что и обычные подшипники для вращающихся валов. Расположенные по краям вала они способны обеспечить всем его точкам синхронное орбитальное вращение по заданной траектории. Для этого к рассмотренному планетарному валу конструкции С.Баландина надо добавить две дополнительные шейки (I и II, см. рис.4) с одновременным отказом от избыточной кинематической связи в точке С (точки, ранее жестко связанной с выходным валом) и исключением, а не выбрасыванием, ее из силовой схемы бесшатунного механизма. Под дополнительные шейки вала устанавливаются две новые, зеркально расположенные к А и В крейцкопфные направляющие А" и В". Теперь каждый рабочий поршень получает по две идентичные подвижные опоры, расположенные от него на равном расстоянии справа и слева. Одна из опор (А, В) может нести на себе смежный рабочий поршень, другая (А", В") предотвращает перекосы планетарного вала и обеспечивает его синхронизацию. Такая компоновка позволяет отказаться от механизма синхронизации, состоящего из соединительного вала и набора шестерен т. к. полная синхронизация вала обеспечивается его собственной конструкцией.

Во вновь скомпонованном бесшатунном двигателе планетарно вращающийся вал, объединяющий поршни, как и прежде, содержит рабочие шейки, связанные со штоками поршней, которые всегда движутся прямолинейно. На теле такого вала остаются оси, перемещающиеся по круговой орбите (в первом приближении это окружности) поэтому их легче всего связать с валом отбора мощности, например поводковым механизмом. Если к такому валу, содержащему рабочие шейки и шейки отбора мощности добавить дополнительно две шейки (I, II) назовем их "синхронизирующими", то каждая рабочая шейка в паре с синхронизирующей образует одну планетарную опору, а две пары опор - полноопорный вал (9) с двумя степенями свободы, вращением вокруг собственной оси и, одновременно, планетарным вращением. Тогда характер нагружения вала становится всегда симметричным, а сам коленчатый вал получает возможность самоустанавливаться в опорах. При этом каждая планетарная опора выполнена с возможностью придания смежным опорным шейкам возвратно-поступательного движения в пересекающихся направлениях. Это и обеспечивает устойчивость планетарного вала в любой точке его орбитального обращения.
В качестве примера на рис.4 также изображена схема силового воздействия газов (Р) на поршни двигателя и характер нагружения подшипниковых опор. Поршни со штоками 1 и 3 в качестве опоры используют крейцкопф 6 от поршней 2 и 4, и синхронизирующий крейцкопф 7. Поршни 2 и 4 для опоры используют крейцкопфы 5 и 8, из них крейцкопф 8 является синхронизирующим. В результате, в момент воспламенения горючей смеси в любом из четырех цилиндров двигателя равноотстоящие от рабочего поршня крейцкопфы 6 и 7 или 5 и 8 нагружаются равными долями. При такой компоновке концевые шейки планетарного вала полностью выводятся из зоны действия газовых сил и передают валу отбора мощности, не входящему в силовую схему механизма, только крутящий момент.

Приведем еще несколько примеров, поясняющих принципы симметрии, в приложении к рассматриваемым бесшатунным силовым механизмам.

Рис. 5
Схема оппозитного бесшатунного двигателя:
1,2,3,4- поршни; 5- коленчатый вал; 6,7- противовесы; 8,9- вал(ы) отбора мощности; 10,11- рабочие крейцкопфы; 12,13,14- синхронизирующие крейцкопфы; I, II, III - синхронизирующие шейки.

Лучший образец - кинематическая схема оппозитного бесшатунного двигателя (рис.5). В отличие от крестообразно скомпонованных четырехцилиндровых двигателей (рис.4) чередование между рабочими тактами здесь происходит равномерно, через 180° по углу поворота коленчатого вала. Конструкция силового механизма включает:четыре рабочих поршня со штоками (1-4), два рабочих крейцкопфа (10,11), три синхронизирующих крейцкопфа (12.13,14). Названные элементы объединены общим коленчатым валом (5) и располагаются на его пяти шейках. Шестая и седьмая шейки вала (5) предназначены для установки противовесов (6,7) и передачи крутящего момента валу отбора мощности (8 или 9). Из рис.5 видно, что у каждого рабочего поршня, по обе стороны и на равных расстояниях, располагаются синхронизирующие крейцкопфы (12,13,14). В оппозитном двигателе они выполняют следующие функции:

  • Совместно с рабочими крейцкопфами обеспечивают синхронизацию коленчатого вала.
  • Воспринимают на себя основную нагрузку от газовых сил, отделяя крейцкопфы рабочих цилиндров от "ударного" нагружения в момент воспламенения горючих газов в соседних цилиндрах.
  • Выполняют функции противовесов для уравновешивания всех масс.

Рассмотренный механизм обладает широкими кинематическими возможностями, он прекрасно уравновешивается. И это единственный тип бесшатунного двигателя, в котором ползуны синхронизирующих крейцкопфов могут быть заменены альтернативными им шатунными группами (рис.6).

Рис. 6

1,2,3,4-поршни; 5,6- рабочие крейцкопфы; 7,8,9- шатун; 10- коленчатый вал; I, II, III -синхронизирующие шейки.

В этом случае достаточным условием для обеспечения синхронизации вала (10) будет полное совмещение дублирующих друг друга кинематических пар при их проецировании на плоскость ХОУ. Здесь, как и в предыдущем примере, рабочие крейцкопфы (5,6), принадлежащие поршням (1-4), движутся прямолинейно. Шатуны же (7,8,9) синхронизирующих шеек (I, II, III) имеют общую ось качания. Доводочные работы по реализации разобранной кинематической схемы могут быть существенно сокращены, в основном за счет максимальной ее унификации с элементной базой тронковых ДВС. В общем же случае, все кинематические схемы подчиняются одному правилу: к любому, наперед заданному количеству рабочих шеек надо добавлять по концам вала, как минимум, две синхронизирующие. В этом правиле есть одно исключение - кинематическая схема, в которой все рабочие шейки одновременно являются и синхронизирующими (рис.7).

Рис. 7

1,2,3,4- поршни; 5- коленчатый вал; 6,7- противовесы; 8,9- вал(ы) отбора мощности; 10,11,12- рабочие синхронизирующие крейцкопфы, 13,14- спарники.

Коленчатый вал (10) составляется всего из пяти шеек. Две крайние шейки вала предназначены для передачи крутящего момента и установки на них противовесов (6,7). Остальные шейки заполнены крейцкопфами (10,11,12). Крейцкопфы 11 и 12 замкнуты между собой спарниками (13,14), на них устанавливаются поршни 1 и 2. Центральная шейка вала с крейцкопфом 10 связана штоками с другой парой поршней (3,4). Траектории комплектов поршней 1,2 и 3,4 пересекаются. На период рабочего хода поршень 3 (или 4) в связке с крейцкопфом 10 опирается на крейцкопфы 11 и 12 которые на этот момент выполняют функции синхронизирующих. При совершении рабочего хода 1 (или 2) поршнем совместно с теперь уже рабочими крейцкопфами 11 и 12 опорный крейцкопф 10 становится синхронизирующим. И так по кругу до бесконечности. Плоскость действия газовых сил в таком механизме будет всегда замыкаться тремя центральными шейками вала.

Такое конструктивное решение позволяет располагать четыре рабочих цилиндра в одной плоскости при минимальной длине и максимальной жесткости коленчатого вала. Общее количество пар трения в двигателе по сравнению с тронковым ДВС снижается в два - три раза!!! Здесь, как и в предыдущих переработанных схемах, коленчатый вал отвечает всем необходимым условиям симметричного нагружения (подробнее см. в отраслевом журнале "Двигателестроение" №3 за 1998г. и №1 за 2000г.).

Изложенное описание претендует лишь на звание краткого путеводителя тому, кто интересуется бесшатунными двигателями, и хотел бы попробовать свои силы в этом направлении. И хотя в нем отсутствуют "различные подробности", без которых построить работающую машину практически невозможно, приведенный выше анализ поможет избежать явных ошибок, потерянного времени и средств.

И в заключении перечислим основные преимущества, которыми располагают бесшатунные ДВС:

  • Компоновка бесшатунного двигателя позволяет значительно сократить объем моторного отсека за счет рационального расположения узлов и деталей двигателя.
  • Взаимное сочетание газовых сил и сил инерции приводит к значительному уменьшению результирующих сил, нагружающих кинематические звенья, что позволяет увеличить механический КПД двигателя.
  • Двигатель частично или полностью освобождается от вращающегося маховика, т.к. движущиеся массы поршней с крейцкопфами представляют собой единый поступательно движущийся маховик.
  • В бесшатунном двигателе, чем больше масса поршней со штоками и крейцкопфами, тем и чем выше обороты двигателя (в известных пределах), тем меньше нагрузка на подшипники, в тронковом двигателе - наоборот.
  • Количество функций, возложенных на рабочие поршни уменьшается, (поршни перестают быть парами трения), соответственно надежность их работы увеличивается.
  • Допускается возможность организации рабочего процесса в двигателе по обе стороны рабочего поршня или использования подпоршневого пространства для компрессорного наддува.
  • Появляется возможность улучшения системы охлаждения поршней - прокачиванием масла через поршневые штоки и поршни для их эффективного охлаждения.
  • Становится возможным для прямолинейно движущихся поршней применить лабиринтный вид уплотнений с полным или частичным отказом от поршневых колец.

К сказанному следует добавить что, как и любая поршневая машина, бесшатунный двигатель обладает целым рядом ограничений, препятствующих росту в нем числа оборотов. Это и газораспределение, с возникающими в нем значительными силами инерции от возвратно - поступательного движения клапанов; и большое сопротивление газовоздушного тракта, ограничивающего наполнение рабочих объемов двигателя горючей смесью; и теплонапряженность, постоянно грозящая двигателю перегревом, а в дизельной комплектации существуют еще и ограничения связанные с топливоподводящей аппаратурой.

Очевидно, что двигатель внутреннего сгорания недостаточно экономичен и по сути имеет невысокий КПД . Это заставляет ученых искать альтернативы – в частности, создавать доступный электрический или водородный транспорт. Однако последние разработки показывают, что ДВС можно сделать по-настоящему эффективным. За счет чего это осуществимо и что мешает применять такие технологии на практике уже сейчас?

Двигатель внутреннего сгорания без преувеличения раскрутил мотор научно-технического прогресса. Автомобильный транспорт является важнейшим средством перевозки пассажиров и грузов. В США сегодня на 1000 человек приходится почти 800 автомобилей, а к 2020 году в России этот показатель составит около 350 машин на тысячу населения.

Подавляющее большинство из более миллиарда автомобилей на планете все еще используют двигатель внутреннего сгорания (ДВС), изобретенный в XIX веке. Несмотря на все технологические ухищрения и «умную» электронику, коэффициент полезного действия современных бензиновых двигателей все еще «топчется» вокруг отметки в 30%.

Самые экономичные дизельные ДВС имеют КПД в 50%, то есть даже они половину топлива выбрасывают в виде вредных веществ в атмосферу.

Естественно, говорить об экономичности ДВС не приходится, особенно если учесть, что современные автомобили сжигают по 10–20 литров горючего на 100 км пути. Не удивительно, что ученые по всему миру пытаются создать доступные электрические и водородные авто. Однако и концепция двигателя внутреннего сгорания не исчерпала потенциал модернизации.

Благодаря последним достижениям в области электроники и материалов, появилась возможность создать по-настоящему эффективный ДВС.

Экомотор

Инженеры компании EcoMotors International творчески переработали конструкцию традиционного ДВС. Он сохранил поршни, шатуны, коленвал и маховик, однако новый двигатель на 15–20% эффективнее, кроме того намного легче и дешевле в производстве. При этом двигатель может работать на нескольких видах топлива, включая бензин, дизель и этанол.

Рис. 1. В целом двигатель EcoMotors имеет элегантную простую конструкцию, в которой на 50% меньше деталей, чем в обычном моторе.

Добиться этого удалось с помощью использования оппозитной конструкции двигателя, в которой камеру сгорания образуют два поршня, двигающихся навстречу друг другу . При этом двигатель двухтактный и состоит из двух модулей по 4 поршня в каждом, соединенных специальной муфтой с электронным управлением.

Двигателем полностью управляет электроника , благодаря чему удалось добиться высокого КПД и минимального расхода топлива. Например, в пробке и других случаях, когда полная мощность двигателя не нужна, работает только один модуль из двух, что уменьшает расход топлива и шум.

Также мотор оснащен управляемым электроникой турбокомпрессором , который утилизирует энергию выхлопных газов и вырабатывает электроэнергию. В целом двигатель EcoMotors имеет элегантную простую конструкцию, в которой на 50% меньше деталей, чем в обычном моторе. У него нет блока головки цилиндров, он сделан из обычных материалов и издает меньше шума и вибраций.

При этом двигатель получился очень легким: на 1 кг веса он выдает мощность больше 1 л.с (на практике он приблизительно в 2 раза легче традиционного двигателя такой же мощности). Более того, изделие EcoMotors легко масштабируется: достаточно добавить несколько модулей и двигатель малолитражки превращается в мотор мощного грузовика.

Опытный двигатель EcoMotors EM100 при размерах 57,9х 104,9х47 см весит 134 кг и выдает мощность 325 л.с. при 3,500 оборотах в минуту (на дизтопливе), диаметр цилиндров – 100 мм. Расход топлива у пятиместного автомобиля с мотором EcoMotors планируется чрезвычайно низкий – на уровне 3–4 л на 100 км .

Экономия во всем

Компания Achates Power поставила себе цель разработать ДВС с расходом топлива 3–4,5 л на 100 км для автомобиля размером с Ford Fiesta. Пока их экспериментальный дизельный двигатель демонстрирует гораздо больший аппетит, но разработчики надеются уменьшить расход. Однако главное в данном моторе исключительно простая конструкция и низкая себестоимость . Согласимся, что экономия на топливе мало чего стоит, если она обошлась ценой многократного удорожания мотора.

Рис. 2. Двигатель Achates Power имеет предельно простую конструкцию.

Двигатель Achates Power имеет предельно простую конструкцию. Это двухтактный оппозитный дизельный мотор, в котором два поршня движутся навстречу друг другу, образуя камеру сгорания. Таким образом отпадает необходимость в головке блока цилиндров и сложном газораспределительном механизме. Большинство деталей мотора изготавливаются с помощью несложных производственных процессов и не требуют дорогих материалов. В целом, двигатель содержит намного меньше деталей и металла, чем обычный.

В настоящее время на испытаниях мотор Achates Power демонстрирует экономичность на 21% большую, чем лучшие «традиционные» дизельные двигатели. Более того, он имеет модульную конструкцию, большую удельную мощность (соотношение вес/л.с.). Также благодаря особой форме верхней части поршня создается вихревой поток особой формы, обеспечивающий отличное перемешивание топливовоздушной смеси, эффективный теплоотвод и уменьшающий время сгорания.

В результате двигатель не только соответствует военным спецификациям армии США, но и превосходит по характеристикам двигатели, которые сегодня устанавливаются на боевую технику.

Простой способ

Американская компания Transonic Combustion решила не создавать новый двигатель, а добиться внушительной (25–30%) экономии топлива с помощью новой системы впрыска.

Высокотехнологичная система впрыска TSCiTM не требует радикальных переделок двигатели и, по сути, представляет собой набор инжекторов и специальный топливный насос.

Рис. 3. Процесс сгорания TSCiTM использует непосредственный впрыск бензина в виде сверхкритической жидкости и специальную систему зажигания.

Процесс сгорания TSCiTM использует непосредственный впрыск бензина в виде сверхкритической жидкости и специальную систему зажигания.

Сверхкритическая жидкость это состояние вещества при определенной температуре и давлении, когда оно не является ни твердым телом, ни жидкостью, ни газом . В таком состоянии вещество приобретает интересные свойства, например, не имеет поверхностного натяжения, и образует мелкодисперсные частицы в процессе фазового перехода. Кроме того сверхкритическая жидкость обладает способностью быстрого переноса массы. Все эти свойства крайне полезны в двигателе внутреннего сгорания, в частности, сверхкритическое топливо быстро смешивается, не имеет крупных капель, быстро сгорает с оптимальным тепловыделением и высокой эффективностью цикла.

Электронный клапан

Компания Grail Engine Technologies разработала уникальный двухтактный двигатель с очень заманчивыми характеристиками.

Так, при потреблении 3–4 литров на «сотню», двигатель выдает 200 л.с. Мотор с мощностью 100 л.с. весит менее 20 кг, а мощностью 5 л.с. – всего 11 кг! При этом Grail Engine, в отличие от обычных двухтактных моторов, не загрязняет топливо маслом из картера, а значит, соответствует самым жестким экологическим стандартам.

Сам двигатель состоит из простых деталей, в основном изготавливаемых способом отливки. Секрет выдающихся характеристик кроется в схеме работы Grail Engine. Во время движения поршня вверх, внизу создается отрицательное давления воздуха и через специальный углепластиковый клапан воздух проникает в камеру сгорания. В определенной точке движения поршня начинает подаваться топливо, затем в верхней мертвой точке с помощью трех обычных электросвечей происходит зажигание топливно-воздушной смеси, клапан в поршне закрывается. Поршень идет вниз, цилиндр заполняется выхлопными газами. По достижении нижней мертвой точки поршень опять начинает движение вверх, поток воздуха вентилирует камеру сгорания, выталкивая выхлопные газы, цикл работы повторяется.

Рис. 4. Секрет выдающихся характеристик кроется в схеме работы Grail Engine.

Компактный и мощный Grail Engine идеально подходит для гибридных автомобилей, где бензиновый мотор вырабатывает электроэнергию, а электромоторы крутят колеса.

В такой машине Grail Engine будет работать в оптимальном режиме без резких скачков мощности, что существенно повысит его долговечность, снизит шум и расход топлива. При этом модульная конструкция позволяет присоединять к общему коленвалу два и более одноцилиндровых Grail Engine, что дает возможность создания рядных двигателей различной мощности.

Новые модели авто появляются каждый год – но по каким-то причинам на них не стоят вышеописанные экономичные и простые двигатели. Действительно, двигателями новой конструкции интересуются все: от вездесущего инвестора Билла Гейтса до Пентагона. Однако автопроизводители не спешат устанавливать новинки на свои машины. Видимо, все дело в том, что крупные автоконцерны сами производят двигатели и, естественно, не желают делиться прибылью со сторонними разработчиками.

Но в любом случае жесткие экологические стандарты и электромобили заставят автопроизводителей внедрять новые технологии, гораздо более важные для здоровья людей и всей планеты, чем мультимедийные системы и дизайнерские изыски.

Двигатель внутреннего сгорания без преувеличения раскрутил мотор научно-технического прогресса. Автомобильный транспорт является важнейшим средством перевозки пассажиров и грузов. В США сегодня на 1000 человек приходится почти 800 автомобилей, а к 2020 году в России этот показатель составит около 350 машин на тысячу населения.

Подавляющее большинство из более миллиарда автомобилей на планете все еще используют двигатель внутреннего сгорания (ДВС), изобретенный в XIX веке. Несмотря на все технологические ухищрения и «умную» электронику, коэффициент полезного действия современных бензиновых двигателей все еще "топчется" вокруг отметки в 30%. Самые экономичные дизельные ДВС имеют КПД в 50%, то есть даже они половину топлива выбрасывают в виде вредных веществ в атмосферу.

Естественно, говорить об экономичности ДВС не приходится, особенно если учесть, что современные автомобили сжигают по 10-20 литров горючего на 100 км пути. Не удивительно, что ученые по всему миру пытаются создать доступные электрические и водородные авто. Однако и концепция двигателя внутреннего сгорания не исчерпала потенциал модернизации. Благодаря последним достижениям в области электроники и материалов, появилась возможность создать по-настоящему эффективный ДВС.

Экомотор

Инженеры компании EcoMotors International творчески переработали конструкцию традиционного ДВС. Он сохранил поршни, шатуны, коленвал и маховик, однако новый двигатель на 15-20% эффективнее, кроме того намного легче и дешевле в производстве. При этом двигатель может работать на нескольких видах топлива, включая бензин, дизель и этанол.

В целом двигатель EcoMotors имеет элегантную простую конструкцию, в которой на 50% меньше деталей, чем в обычном моторе

Добиться этого удалось с помощью использования оппозитной конструкции двигателя, в которой камеру сгорания образуют два поршня, двигающихся навстречу друг другу. При этом двигатель двухтактный и состоит из двух модулей по 4 поршня в каждом, соединенных специальной муфтой с электронным управлением. Двигателем полностью управляет электроника, благодаря чему удалось добиться высокого КПД и минимального расхода топлива. Например, в пробке и других случаях, когда полная мощность двигателя не нужна, работает только один модуль из двух, что уменьшает расход топлива и шум.

Хафиятуллин Ринат:

Также мотор оснащен управляемым электроникой турбокомпрессором, который утилизирует энергию выхлопных газов и вырабатывает электроэнергию. В целом двигатель EcoMotors имеет элегантную простую конструкцию, в которой на 50% меньше деталей, чем в обычном моторе. У него нет блока головки цилиндров, он сделан из обычных материалов и издает меньше шума и вибраций. При этом двигатель получился очень легким: на 1 кг веса он выдает мощность больше 1 л.с (на практике он приблизительно в 2 раза легче традиционного двигателя такой же мощности). Более того, изделие EcoMotors легко масштабируется: достаточно добавить несколько модулей и двигатель малолитражки превращается в мотор мощного грузовика.

Опытный двигатель EcoMotors EM100 при размерах 57,9х 104,9х47 см весит 134 кг и выдает мощность 325 л.с. при 3,500 оборотах в минуту (на дизтопливе), диаметр цилиндров - 100 мм. Расход топлива у пятиместного автомобиля с мотором EcoMotors планируется чрезвычайно низкий – на уровне 3-4 л на 100 км.

Экономия во всем

Компания Achates Power поставила себе цель разработать ДВС с расходом топлива 3-4,5 л на 100 км для автомобиля размером с Ford Fiesta. Пока их экспериментальный дизельный двигатель демонстрирует гораздо больший аппетит, но разработчики надеются уменьшить расход. Однако главное в данном моторе – исключительно простая конструкция и низкая себестоимость. Согласимся, что экономия на топливе мало чего стоит, если она обошлась ценой многократного удорожания мотора.


Двигатель Achates Power имеет предельно простую конструкцию

Двигатель Achates Power имеет предельно простую конструкцию. Это двухтактный оппозитный дизельный мотор, в котором два поршня движутся навстречу друг другу, образуя камеру сгорания. Таким образом отпадает необходимость в головке блока цилиндров и сложном газораспределительном механизме. Большинство деталей мотора изготавливаются с помощью несложных производственных процессов и не требуют дорогих материалов. В целом, двигатель содержит намного меньше деталей и металла, чем обычный.

В настоящее время на испытаниях мотор Achates Power демонстрирует экономичность на 21% большую, чем лучшие "традиционные" дизельные двигатели. Более того, он имеет модульную конструкцию, большую удельную мощность (соотношение вес/л.с.). Также благодаря особой форме верхней части поршня создается вихревой поток особой формы, обеспечивающий отличное перемешивание топливовоздушной смеси, эффективный теплоотвод и уменьшающий время сгорания. В результате двигатель не только соответствует военным спецификациям армии США, но и превосходит по характеристикам двигатели, которые сегодня устанавливаются на боевую технику.

Простой способ

Американская компания Transonic Combustion решила не создавать новый двигатель, а добиться внушительной (25-30%) экономии топлива с помощью новой системы впрыска.

Высокотехнологичная система впрыска TSCiTM не требует радикальных переделок двигатели и, по сути, представляет собой набор инжекторов и специальный топливный насос.


Процесс сгорания TSCiTM использует непосредственный впрыск бензина в виде сверхкритической жидкости и специальную систему зажигания

Процесс сгорания TSCiTM использует непосредственный впрыск бензина в виде сверхкритической жидкости и специальную систему зажигания.

Сверхкритическая жидкость – это состояние вещества при определенной температуре и давлении, когда оно не является ни твердым телом, ни жидкостью, ни газом. В таком состоянии вещество приобретает интересные свойства, например, не имеет поверхностного натяжения, и образует мелкодисперсные частицы в процессе фазового перехода. Кроме того сверхкритическая жидкость обладает способностью быстрого переноса массы. Все эти свойства крайне полезны в двигателе внутреннего сгорания, в частности, сверхкритическое топливо быстро смешивается, не имеет крупных капель, быстро сгорает с оптимальным тепловыделением и высокой эффективностью цикла.

Электронный клапан

Компания Grail Engine Technologies разработала уникальный двухтактный двигатель с очень заманчивыми характеристиками. Так, при потреблении 3-4 литров на "сотню", двигатель выдает 200 л.с. Мотор с мощностью 100 л.с. весит менее 20 кг, а мощностью 5 л.с. – всего 11 кг! При этом Grail Engine, в отличие от обычных двухтактных моторов, не загрязняет топливо маслом из картера, а значит, соответствует самым жестким экологическим стандартам.

Сам двигатель состоит из простых деталей, в основном изготавливаемых способом отливки. Секрет выдающихся характеристик кроется в схеме работы Grail Engine. Во время движения поршня вверх, внизу создается отрицательное давления воздуха и через специальный углепластиковый клапан воздух проникает в камеру сгорания. В определенной точке движения поршня начинает подаваться топливо, затем в верхней мертвой точке с помощью трех обычных электросвечей происходит зажигание топливно-воздушной смеси, клапан в поршне закрывается. Поршень идет вниз, цилиндр заполняется выхлопными газами. По достижении нижней мертвой точки поршень опять начинает движение вверх, поток воздуха вентилирует камеру сгорания, выталкивая выхлопные газы, цикл работы повторяется.


Секрет выдающихся характеристик кроется в схеме работы Grail Engine

Компактный и мощный Grail Engine идеально подходит для гибридных автомобилей, где бензиновый мотор вырабатывает электроэнергию, а электромоторы крутят колеса. В такой машине Grail Engine будет работать в оптимальном режиме без резких скачков мощности, что существенно повысит его долговечность, снизит шум и расход топлива. При этом модульная конструкция позволяет присоединять к общему коленвалу два и более одноцилиндровых Grail Engine, что дает возможность создания рядных двигателей различной мощности.

Новые модели авто появляются каждый год – но по каким-то причинам на них не стоят вышеописанные экономичные и простые двигатели. Действительно, двигателями новой конструкции интересуются все: от вездесущего инвестора Билла Гейтса до Пентагона. Однако автопроизводители не спешат устанавливать новинки на свои машины. Видимо, все дело в том, что крупные автоконцерны сами производят двигатели и, естественно, не желают делиться прибылью со сторонними разработчиками. Но в любом случае жесткие экологические стандарты и электромобили заставят автопроизводителей внедрять новые технологии, гораздо более важные для здоровья людей и всей планеты, чем мультимедийные системы и дизайнерские изыски.

Михаил Левкевич

Новые технологии направлены на то, чтобы сделать двигатели внутреннего сгорания более эффективными. В предыдущие годы они стали повсеместными, а в будущем станут «умными». К сожалению, пока они не обладают высоким КПД и неэкономичны. Но пользуясь последними достижениями в области материалов и электроники, вполне возможно исправить эти недостатки.

Автомобильный концерн Мазда часто предлагает интересные инновационные решения. Один из вопросов, которыми он решил заняться ─ экономия топлива. Компания разработала новые двигатели Skyactiv-G. Уже планируются к выпуску малолитражные автомобили Mazda 2, оснащенные ими. Они обладают высочайшей степенью сжатия, за счет чего и повышается топливная экономичность. По версии разработчиков, средний расход бензина будет составлять примерно 3 литра на сотню километров.

Электронный клапан

Данный двухтактный двигатель разработан корпорацией Grail Engine Technologies. Он выполнен из простых деталей, изготовленных методом отливки.

Преимущества:

  • изготовлен в соответствии с экологическими стандартами;
  • потребляя от трех до четырех литров на «сотню» выдает 200 л.с.;
  • возможна установка на гибридные автомобили.

Лазеры

Новые технологии в двигателях внутреннего сгорания стали возможны с появлением лазеров. Стандартные свечи имеют серьезную проблему. Она заключается в необходимости сильной искры, но в таком случае идет быстрый износ электродов. Решить этот вопрос можно, если применять лазеры для воспламенения топлива. Они имеют преимущество, так как позволяют задавать важные параметры: угол зажигания и мощность.

Учеными разработаны керамические лазеры d 9 мм. Они подойдут для подавляющего большинства моторов.

Pinnacle

Одной из перспективных разработок являются двигатели Pinnacle.В них поршни располагаются противоположно относительно друг друга, находясь в одном цилиндре. Между ними и воспламеняется топливо. Подобное их расположение значительно экономит энергию и увеличивает эффективность двигателя. При этом стоимость силового агрегата достаточно низкая.

Эти двигатели принципиально отличаются от распространенных оппозитных моделей, использующихся повсеместно.

Iris

Это двухтактный двигатель с изменяемой геометрией и площадью поршня. Он легок и компактен, а его КПД составляет 45%.

Изобретатель Iris Тимбер Дик придумал концепцию с шестью поршнями, полезная площадь которых в три раза больше, чем в стандартной паре. Каждый поршень представляет собой стальной, изогнутый лепесток.

Алгоритм работы:

  • поступление воздуха через камеру сгорания;
  • смыкание лепестков к середине камеры и сжимание воздуха;
  • раздвижение поршней и поворот валов;
  • впрыскивание топлива и зажигание;
  • открытие выпускных клапанов.

Разделение радиатором

Особенность инновации в том, что используется разделение мотора радиатором на две части. Впуск и сжатие топлива осуществляется в холодных цилиндрах, а сгорание и выхлоп газов – в горячих. При таком функционировании агрегата получается экономия около 40%. Ученые все еще дорабатывают и совершенствуют данную систему, чтобы добиться еще большей экономии (до 50%).

Scuderi

Это двигатель разделенного цикла Air-Hybrid разработан американской компанией Scuderi Group. Он более экономичен, если сравнивать с обычными аналогами. Сотрудники компании рассчитывают, что их изобретение станет настоящим прорывом. Они уже получили на него патент. Для наиболее рационального использования энергии он разделяет 4 стандартных поршневых цилиндра на рабочие и вспомогательные. Это делается для того, чтобы разумно использовать энергию, которую они будут вырабатывать. Механизм функционирования основан на соединении двух цилиндров при помощи специального канала. Далее происходит впрыскивание сжатого воздуха во второй цилиндр с последующим воспламенением топливовоздушной смеси и выхлопом.

Экомотор

Компания Eco Motors International переработала конструкцию двигателя внутреннего сгорания, применив творческий подход. Он получился двухтактный, с элегантной и простой конструкцией. Пара модулей (по четыре поршня в каждом) соединены муфтой и имеют электронное управление.

Турбокомпресс утилизирует энергию выхлопных газов и участвует в выработке электроэнергии.

Достоинства:

  • легкость;
  • низкий расход топлива;
  • небольшие производственные затраты;
  • масштабируемость (при добавлении нескольких модулей двигатель малолитражного автомобиля превращается в мотор для грузовика).

Работа двигателя возможна на бензине, дизеле, этаноле.

Роторные двигатели

Американские ученые разрабатывают еще одну интересную инновацию автомобильного мотора. Его ресурс будет более высокий, чем у обычных моделей. Механизм действия:

  1. Получение энергии под воздействием взрывных волн.
  2. Вращение ротора, прохождение топлива по каналам.
  3. Образование ударной волны.
  4. Воспламенение и выхлоп отработанных газов.

Ученые в 2018 году продолжают искать новые технологии для производства экономичных и экологичных моделей двигателей внутреннего сгорания. Многие проекты еще находятся на стадии разработок и ждут финансирования.

В то время как все те же основные принципы, которые приводили в движение первые автомобильные двигатели, всё ещё используются и сегодня, современные моторы сильно эволюционировали, чтобы соответствовать требованиям мощности, экологичности и эффективности для выполнения потребностей современных водителей и, конечно же, законодательных рамок.

Подумайте о старых двигателях, как о волках и о современных, как о собаках. Оба вида животных имеют одно и то же наследие и схожие характеристики, но второй вид отлично выполняет свои функции в современных ситуациях, в то время как первые просто не смогли приспособиться к жизни в городе или пригороде; первые выполняют одну задачу: охотиться, чтобы выжить, вторые выполняют целый ряд задач и имеют свои подвиды для выполнения конкретных функций, как то: охота, охрана, участие в выставках и другие. Также и двигатели: от более ранних их версий требовалось всего немного - просто приводить в движение авто, чтобы то двигалось хотя бы не медленнее лошади, в то время как от современного двигателя требуется гораздо больше: быть тихим, и в то же время иметь достаточную мощь , чтобы соответствовать современным критериям, а, может быть, даже быть предметом гордости за свой автомобиль для его владельца.

Прежде чем мы поговорим о том, чем современные автомобильные двигатели отличаются от старых, необходимо понять автомобиля. В любом случае принцип один: смесь бензина и воздуха воспламеняется в камере под названием цилиндр . В цилиндре поршень, который получает давление из-за взрыва, перемещается вниз, а затем снова вверх по инерции и под действием другого поршня, который находится в прямо противоположном расположении относительно первого. Поршень прикреплён к коленчатому валу. Когда поршень перемещается вверх и вниз, это заставляет коленвал вращаться. Коленчатый вал затем выходит на коробку передач, которой и передаёт это вращение, и далее коробка передаёт ходовой части, апогей которой - колёса машины. Звучит просто, не так ли? С современными двигателями всё абсолютно также, но есть огромная куча нюансов.

Между тем, современный бензиновый двигатель ещё очень далёк от идеала эффективности - только представьте, из всей имеющейся химической энергии в бензине только около 15 её процентов преобразуется в механическую энергию, которая в конечном счёте движет автомобилем. Статистика говорит о том, что ещё более 17 процентов энергии теряется вхолостую и колоссальные 62 процента теряется в двигателе за счёт тепла и трения.

На фото слева: старый двигатель Saab; на фото справа: современный двигатель Mini Cooper

Современные двигатели имеют ряд технологий, чтобы сделать их более эффективными в работе. Например, технология непосредственного впрыска, которая смешивает топливо и воздух, прежде чем они будут перемещены в цилиндр, может улучшить эффективность работы двигателя на 12 процентов, потому что топливо сгорает более эффективно. Турбокомпрессоры и турбонаддув , которые используют сжатый воздух от выхлопной системы авто, делают эффективнее цикл сгорания. Сжатый воздух приводит к более эффективному сгоранию. Технология газораспределения и деактивации цилиндров являются такими новшествами, которые позволяют двигателю использовать только такое количество топлива, которое необходимо двигателю, аналогично повышая его эффективность.


Но одно из основных различий между современными автомобильными двигателями и "пожилыми" моторами заключается в том, что современные двигатели работают как бы в режиме "standby", в минимальном режиме, когда им не нужно разгонять машину. В старом 8-цилиндровом двигателе все восемь цилиндров работали независимо от того, находится автомобиль на холостом ходу или получает ускорение от педали акселератора так быстро, как мог бы. Кроме того, все восемь цилиндров получали такое же количество топлива в любой промежуток времени.

Сегодняшние двигатели имеют технологию, которая позволяет им работать умнее. Деактивация цилиндров - это система, которая позволяет некоторым цилиндрам в двигателе выключиться, когда они не нужны, например, когда автомобиль работает на холостом ходу или движется накатом, а педаль акселератора не нажата нисколько. Но когда необходима вся мощь мотора, то эти выключенные ранее цилиндры "просыпаются" и помогают остальным. Деактивация цилиндров помогает двигателям работать более эффективно, так как это означает, что двигатель использует только то топливо, которое необходимо, и прилагает только те усилия, которые необходимы для того, чтобы двигатель не заглох и чтобы производилось достаточно энергии для работы электроники, климат-контроля и прочих дополнительных функций машины.

Технология газораспределения, в свою очередь, помогает современным двигателям работать "умнее". Без этой системы клапаны открываются для того же количества топлива в течение одинакового количества времени и с таким же зазором в любое время, как бы ни старался работать двигатель. Это порождает большие отходы топлива. С переменной газораспределения отверстия клапанов оптимизированы для типа работы, который двигатель делает. Это помогает мотору потреблять меньше топлива и работать намного эффективнее.

Современные двигатели имеют много технологий, которые помогают использовать меньше топлива, производя больше энергии, чем старые двигатели, но у них есть ещё одна вещь, которой пренебрегли "пожилые" двигатели - это партнеры.

Сегодняшние автомобильные двигатели - это не только сложные технологические достижения, но это целая цепочка узлов и агрегатов, работающих слаженно всеми компонентами таких высокотехнологичных достижений, которые помогают им лучше выполнять свою работу. Так, раньше двух-трёх передач в коробке было вполне достаточно, сегодня четырёх- и даже пятиступенчатые КПП уже устаревают - современные двигатели оснащаются современными коробками передач с семью и даже восемью скоростями . Чем больше число передач, тем лучше двигатель работает сразу в двух направлениях: во-первых, в более широком диапазоне скоростей можно достичь более разнообразных оборотов двигателя, а, значит, ускориться медленно или быстро в зависимости от желаемых потребностей; во-вторых, экономить топливо более эффективно за счёт тех же оборотов. Но даже если восьми передач в коробке не хватает, современные двигатели могут иметь "партнерские отношения" и вовсе с бесступенчатой ​​трансмиссией (вариатором). В принцип работы вариаторов заложено бесконечное число передаточных чисел, что делает их в состоянии передать мощность двигателя на колёса наиболее эффективным способом в любом диапазоне скорости автомобиля.

В современные двигатели получают помощь от электродвигателей, работающих на аккумуляторных батареях. В то время как электродвигатель может питать автомобиль на медленных скоростях или вовсе только питать электрооборудование в машине, когда автомобиль останавливается, он также может генерировать дополнительную мощность, когда это необходимо, например, когда автомобиль ускоряется недостаточно быстро.

Но главный партнёр, что позволил значительно повысить эффективность двигателя - это, конечно же, бортовой компьютер , "мозги" автомобиля, который управляет и переключением коробки (кроме механической коробки передач), и обогащённостью и количеством впрыскиваемой в цилиндры топливо-воздушной смеси, и ещё огромным рядом функций.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png